background image

Compact current relay and 
protection assemblies

RXHL 401 and

RAHL 401

1MRK 509 062-BEN

Page 2

Functions

Overcurrent 
protection

Application

In radially fed power networks the phase 
overcurrent function can be used as main or 
back-up short circuit protection for lines and 
transformers. The time current characteristic 
(definite time or any of the inverse time char-
acteristics) should be chosen according to 
common practice in the network. Normally 
the same time current characteristic i used for 
all phase overcurrent relays in the network. 
This includes phase overcurrent protection 
for lines, transformers and other equipment. 
The measuring relay offers great flexibility in 
the choice of time characteristic.

There is a possibility to use phase overcurrent 
protection in meshed systems as short circuit 
protection for lines. It must however be rea-
lised that the setting of a short circuit protec-
tion system in meshed networks, can be very 
complicated and a large number of fault cur-
rent calculations are required. There are situa-
tions where there is no possibility to achieve 
selectivity with a protection system based on 
phase overcurrent relays in a meshed system. 
In combination with impedance relays or line 
differential protections, phase overcurrent 
relays can serve as back-up short circuit pro-
tection for parts of the lines.

For shunt capacitors, shunt reactors, motors 
and other similar equipment phase overcur-
rent protection can serve as main or back-up 
short circuit protection. Also for these appli-
cations the time characteristics should be cho-
sen so that co-ordination with other 
overcurrent protection in the power system 
can be made.

As the short circuit current level will change 
depending on the switching state in the power 
system, there is a great benefit to be able to 
change parameter-setting groups when the 
switching state in the system is changed. The 
measuring relay will enable this.

The blocking option can be used to decrease 
fault time for some fault points (for example 
busbars) in radially fed networks.

Design

The overcurrent protection has a low set stage 
with inverse or definite time delayed func-
tion. The inverse time characteristics are pro-
vided with minimum operate time for 
improved selectivity in certain applications. 

The low set stage also has a reset time logic 
for detection of intermittent faults. If the pro-
tection starts and the fault current drops the 
reset of the function will be made gradually 
so that the integrated fault current time area 
will be remembered for some time. In case of 
an intermittent fault every re-strike of the 
fault will increase the integrated current-time 
area so that the fault can be tripped. 

The overcurrent protection has two high set 
stages with definite time delayed function. 
The overcurrent protection is designed for 
low transient overreach which allows 
extended reach and smaller setting margins.

The following characteristics are selectable 
for the low set stage (diagrams are shown in 
the chapter “Design description”):

1 Definite time delayed

2 Inverse time delayed:

- Normal inverse (NI)

- Very inverse (VI)

- Extremely inverse (EI)

- Long time inverse (LI)

- RI inverse (RI)

NI, VI, EI and LI according to IEC 60255-3.

RI-curve according to old electromechanical 
relays manufactured by ASEA.

Earth-fault protection

Application

The earth-fault protection is non-directional 
and based on a measurement of the residual 
current. It is mainly used in solidly and low 
impedance grounded networks. In high 
impedance grounded networks, the size of the 
network and national standards are the factors 
determining whether the protection can be 
used. The high set stages are used in the simi-
lar way as they are in the phase overcurrent 
protection, but only in solidly and low imped-
ance grounded networks.

In solidly grounded networks the earth-fault 
currents can be of the same order of magni-
tude as the short-circuit currents.

Earth-faults with high fault resistance can be 
detected by measuring the residual current. 
This type of protection provides maximum 
sensitivity to high resistive earth-faults. It is 

Summary of Contents for RXHL 401

Page 1: ...the HMI The dialog with the relay can be made in English or Swedish There are two binary inputs for blocking or enabling of selected functions The binary inputs can also be used for change of setting...

Page 2: ...on can be used to decrease fault time for some fault points for example busbars in radially fed networks Design The overcurrent protection has a low set stage with inverse or definite time delayed fun...

Page 3: ...ssible to use the protection as a multi stage earth fault current line protection where the first stage has instantaneous func tion and covers most of the protected line The second stage has a short d...

Page 4: ...active group and also a binary output signal for indication of which setting group is active Self supervision Application The self supervision function includes the following functions Checksum verif...

Page 5: ...he relay will be done in the local HMI The relay is provided with three LED s one for start one for trip and one for in service The relay is provided with two binary inputs and five binary outputs the...

Page 6: ...62 BEN Page 6 Time characteristics Figure 2 Normal inverse time characteristic Figure 3 Very inverse characteristic 1 2 3 4 5 7 10 20 I I k 1 1 0 05 0 1 0 3 0 5 0 7 0 9 20 10 1 0 1 S 99000244 vsd 9900...

Page 7: ...9 062 BEN Page 7 Figure 4 Extremely inverse time characteristic Figure 5 Long time inverse characteristic 99000980 vsd 1 2 3 4 5 7 10 20 I I k 1 1 0 05 0 1 0 3 0 5 0 7 0 9 100 10 1 0 01 S 0 1 99000248...

Page 8: ...09 062 BEN Page 8 Figure 6 RI inverse time characteristic Figure 7 Logarithmic inverse time IDG characteristic 99000247 vsd 1 2 3 4 5 7 10 20 I I k 1 1 0 05 0 1 0 3 0 5 0 7 0 9 20 10 1 0 1 S 0 5 2 1 3...

Page 9: ...and protection assemblies RXHL 401 and RAHL 401 1MRK 509 062 BEN Page 9 Frequency characteristic Figure 8 Frequency characteristic 20 30 40 50 60 70 100 150 200 300 400 Hz x set operate value 7 6 5 4...

Page 10: ...0 20 x set operate value IN Stage IN 1 0 20 x set operate value IN Effective phase current range 0 04 60 x Ir Effective earth current range 0 05 50 x INr Rated frequency Fr 50 and 60 Hz Frequency ran...

Page 11: ...ductive load with L R 10 ms During 200 ms 30 A During 1 s 10 A Breaking capacity AC cos 0 4 max 250 V 8 A DC L R 40 ms 48 V 1 A 110 V 0 4 A 220 V 0 2 A 250 V 0 15 A Power consumption Rated values Auxi...

Page 12: ...etic 10 V 0 15 80 MHz IEC 61000 4 6 Level 3 Interruptions in auxiliary voltage 2 200 ms IEC 60255 11 No reset for inter ruptions 24 V DC 20 ms 110 V DC 70 ms 250 V DC 300 ms All tests are performed to...

Page 13: ...ses IEC 60255 21 2 class 1 Seismic X axis 3 g 1 50 1 Hz IEC 60255 21 3 class 2 extended Method A Y axis 3 g 1 50 1 Hz Z axis 2 g 1 50 1 Hz Climatic condition Partially weather protected locations swit...

Page 14: ...alue for current measuring 50 60 Hz 3 3 3 Consistency of set operate value 50 60 Hz 1 1 1 Typical reset ratio 95 Typical operate time I 0 3 x set operate value 40 ms Typical reset time I 3 0 x set ope...

Page 15: ...ms 1 3 20 0 x I set 5 and 30 ms Linear reset time 0 500 s a A percentage value of theoretical time and a definite time delay b According to IEC 60225 3 signed error 5 Earth fault protection Stage IN...

Page 16: ...uracy definite time 30 ms Setting range inverse time k 0 05 1 1 Min time inverse time 0 2 0 s Accuracy inverse timea NI VI EI LIb 2 0 x I set 12 5 and 30 ms 5 0 x I set 7 5 and 30 ms 10 0 x I set 5 an...

Page 17: ...requirements concerning emission and immunity distur bances with this protection assembly will be met The measuring relay has 5 binary outputs and 2 binary inputs Protections are normally available wi...

Page 18: ...ies The table below shows the different variants of the compact current relay RXHL 401 in protection assemblies type RAHL 401 se980096 Figure 10 Protection assembly example 101 107 113 125 325 101 RTX...

Page 19: ...d circuit diagrams available in installation and commissioning manual for RXHL 401 and RAHL 401 c Selection of phase and neutral current must be the same Ir INr 1 A or Ir INr 5 A RAHL 401 protection a...

Page 20: ...FC Rated phase current Ir 5 A rated neutral current INr 1 A 1MRK 000 322 FD Rated phase current Ir 5 A rated neutral current INr 5 A 1MRK 000 322 FE Auxiliary voltage for included auxiliary relay RXM...

Page 21: ...01 and RAHL 401 1MRK 509 062 BEN Page 21 Accessories User documentation RXHL 401 and RAHL 401 Operator s manual Quantity 1MRK 509 063 UEN Technical reference manual Quantity 1MRK 509 064 UEN Installat...

Page 22: ...ity 1MRK 001 977 AA AC inputs Rated phase current Ir 1 A rated neutral current INr 0 1 A 1MRK 000 322 FA Rated phase current Ir 1 A rated neutral current INr 1 A 1MRK 000 322 FB Rated phase current Ir...

Page 23: ...Test system COMBITEST 1MRK 512 001 BEN Buyer s guide DC DC converter 1MRK 513 001 BEN Buyer s guide Auxiliary relays 1MRK 508 015 BEN Documents related to RXHL 401 and RAHL 401 Identity number Technic...

Page 24: ...Compact current relay and protection assemblies RXHL 401 and RAHL 401 1MRK 509 062 BEN Page 24...

Reviews: