203
ADOBE FRAMEMAKER 6.0
MIF Equation Statements
<MathFullForm `diff[char[x]]'>
<MathFullForm `diver[char[x]]'>
<MathFullForm `downbrace[char[x]]'>
<MathFullForm `exp[char[x]]'>
<MathFullForm `exists[char[x]]'>
<MathFullForm `fact[char[x]]'>
<MathFullForm `floor[char[x]]'>
<MathFullForm `forall[char[x]]'>
<MathFullForm `id[char[x]]'>
<MathFullForm `id[(*i1i*)char[x]]'>
<MathFullForm `id[(*i2i*)char[x]]'>
<MathFullForm `imag[char[x]]'>
<MathFullForm `ket[char[x]]'>
<MathFullForm `lap[char[x]]'>
<MathFullForm `ln[char[x]]'>
<MathFullForm `lparen[char[x]]'>
<MathFullForm `lparen[(*i1i*)char[x]]'>
<MathFullForm `lparen[(*i2i*)char[x]]'>
<MathFullForm `minus[char[x]]'>
<MathFullForm `mp[char[x]]'>
<MathFullForm `neg[char[x]]'>
<MathFullForm `norm[char[x]]'>
<MathFullForm `overline[char[x]]'>
<MathFullForm `partial[char[x]]'>
<MathFullForm `pm[char[x]]'>
<MathFullForm `real[char[x]]'>
<MathFullForm `rparen[char[x]]'>
<MathFullForm `rparen[(*i1i*)char[x]]'>
Example
MathFullForm statement
x
d
x
∇•
x
}
x
exp
x
∃
x
!
x
x
∀
x
( )
x
[ ]
x
{ }
x
imag
x
|
ñ
x
∇
2
x
ln
x
(
x
[
x
{
x
–
x
+−
x
¬
x
x
x
∂
x
±
x
real
x
)
x
]
Summary of Contents for FRAMEMAKER 6.0
Page 1: ...MIF Reference Online Manual FrameMaker 6 0 Adobe ...
Page 15: ...15 ADOBE FRAMEMAKER 6 0 Introduction ...
Page 159: ...159 ADOBE FRAMEMAKER 6 0 MIF Book File Statements ...
Page 232: ...232 ADOBE FRAMEMAKER 6 0 MIF Asian Text Processing Statements ...
Page 252: ...252 ADOBE FRAMEMAKER 6 0 Examples ...