background image

IN 45 100 010 • AA • 7 / 12 

Optimization of binding 

The key conditions to be optimized is usually pH and conductivity (by addition of NaCl, other salts, or dilution). 
Conditions  selection  should  be  to  maximize  purity  and/or  yield  of  the  target  protein,  while  keeping  it  in  a 
native/active state. 
 
pH and salt optimization  
Strong ion exchangers (S and Q) are used over a broad pH range. The useful pH range is limited by the target 
protein pH stability and solubility window. Weak ion exchangers have a narrower pH range for usage. The weak 
DEAE anion exchanger must be used at a pH below its p

K

a

 value of 9.0 - 9.5 to retain its positive charge. The 

difference between the Q and DEAE ligands may give desired differences in selectivity. Purification is often done 
by combining an anion exchange column and a cation exchange column with or without changing the pH.  
 
It should be noted that the binding capacity and purity depends on the combination of pH and counter ion 
concentration  (i.e.,  salt  concentration  or  ionic  strength).  Therefore,  it  is  recommended  to  investigate  the 
combination effects of pH and salt concentration during optimization. A low salt concentration is considered to 
give strong binding with high capacity, but it should be noted that it is often observed that an intermediate 
concentration of salt gives a better binding capacity. For example, a concentration of 50 mM NaCl in the buffer 
may give a better  capacity  than 20 mM NaCl. This may be attributed  to improved  mass transport of target 
substance into the pores of the resin, obtained by reduced pore exclusion. Pore exclusion can be explained as 
a hindrance of diffusion caused by strong interaction of substance on the walls of the outer pores, causing, in 
effect,  a  “traffic  jam”  and  thus  reduced  diffusion  rate  into  the  pores.  A  slightly  elevated  salt  concentration 
reduces, but does not eliminate the interactions with the resin by creating a dynamic adsorption-desorption 
equilibrium that allows further diffusion into the resin, thus increasing the binding capacity. 
 
Tuning the flow rate 
Flow rate is another factor that can be optimized to improve the binding capacity during sample application or 
the resolution during elution. A low flow rate during sample application promotes binding capacity since more 
time is allowed for mass transport of the target substance into the pores of the resin. A small substance (e.g., a 
peptide) has a high diffusion rate and is not hindered by the walls in the pores and will have fast mass transport 
into the resin and thus be adsorbed at a high flow rate. A large target substance (e.g., a large protein) has a 
lower diffusion rate and is held back by the walls of the pores slowing its mass transport. A high binding capacity 
of this substance may require a lower flow rate. If only a part of the binding capacity of the resin is used the 
sample application can be done at a higher flow rate without loss of the target substance. 
 
For scale-up planning it is useful to use the expression r

esidence time

 instead of flow rate. The residence time 

can be defined as the time between entering and exiting the column of a specific part of the sample or buffer. 
It can be calculated as column volume divided by the volumetric flow (e.g., the residence time for 1 ml column 
at 0.5 ml/min is 1 ml / 0.5 ml/min = 2 minutes). The residence time is typically 1 to 5 minutes in IEX. When a 
suitable residence time has been selected using BabyBio Q, BabyBio S or BabyBio DEAE columns, this value can 
be used for calculation of a suitable flow rate on a larger column with higher bed. The linear flow rate can be 
increased if the bed height is increased while keeping the residence time constant. 

 

 

 

Summary of Contents for BabyBio DEAE

Page 1: ...r basic proteins i e proteins with a high isoelectric point pI while BabyBio Q and BabyBio DEAE columns are suitable for purification of acidic proteins i e proteins with low pI 1 Choose a suitable pH and buffer for the binding of the target protein One pH unit below pI BabyBio S columns or above pI BabyBio Q and BabyBio DEAE columns is a good starting point 2 Connect the column to the chromatogra...

Page 2: ...therefore interact with an ion exchange resin also at the pI The likelihood of binding to either the cation or the anion exchange resin will increase when moving away from the pI Ion exchange chromatography begins with equilibration of the column to establish the desired pH and charging the resin with suitable counter ions to the charged ligands on the resin e g the negative sulfonate groups can i...

Page 3: ...f a sample that has not been properly clarified may reduce the performance and lifetime of the column The sample should be applied under conditions similar to those of the binding buffer 2 Connect the column Cut off or twist off the end at the outlet of the column see Figure 2 Note It is of high importance to cut off the tip at the very end of the cone preferable using a scalpel Incorrect removal ...

Page 4: ...ate may reduce the yield Applied samples should have a pH that gives the target protein a charge that is opposite the charge of the column resin The pH together with the ionic strength in the sample solution might need adjustment for optimal binding 6 Wash After sample application remove unbound impurities by washing the column with 20 30 CV washing buffer or until desired A280 nm absorbance of th...

Page 5: ...m pressure limit onto the first column If possible the maximum pressure of the chromatography system should be set according to Table 2 Remember always to take the system fluidics contribution to the pressure into account Table 2 Recommended maximum pressure settings for BabyBio columns connected in series Notice that the maximum pressure over each column is always 3 bar No of columns in series Ma...

Page 6: ...fication using BabyBio S BabyBio Q and BabyBio DEAE Other buffers can possible be used Buffer Product Buffer composition Binding buffer BabyBio S 50 mM Na phosphate pH 7 0 Binding buffer BabyBio Q 50 mM Tris HCl pH 7 4 Binding buffer BabyBio DEAE 50 mM Tris HCl pH 7 4 Elution buffer BabyBio S 50 mM Na phosphate 1 M NaCl pH 7 0 Elution buffer BabyBio Q 50 mM Tris HCl 1 M NaCl pH 7 4 Elution buffer ...

Page 7: ... jam and thus reduced diffusion rate into the pores A slightly elevated salt concentration reduces but does not eliminate the interactions with the resin by creating a dynamic adsorption desorption equilibrium that allows further diffusion into the resin thus increasing the binding capacity Tuning the flow rate Flow rate is another factor that can be optimized to improve the binding capacity durin...

Page 8: ...endent on purity and recovery requirements as well as properties of the target protein and the sample Using a gradient elution gives increased purity than step elution but step elution may be necessary to obtain the highest possible concentration of the target protein In order to optimize the salt concentration for step elution an initial gradient test run can be carried out to identify a suitable...

Page 9: ...as ion exchange chromatography This can be carried out quickly and easily using BabyBio Dsalt 1 ml or 5 ml columns see Related products BabyBio Dsalt columns are also a useful alternative to dialysis for larger sample volumes or when samples need to be processed rapidly to avoid degradation Additional purification Ion exchange chromatography is a powerful single protein purification step or combin...

Page 10: ...sin using 1 M NaOH applied by a low reversed flow for 2 hours or overnight is often sufficient CIP of the column can be carried out as followed 1 Wash the column with 5 CV deionized water 2 Apply 3 10 CV of 0 5 1 M NaOH for 15 30 minutes Note The contact time is the important factor treatment with NaOH overnight can be necessary if severely fouled 3 Wash the column with 5 10 CV deionized water or ...

Page 11: ... ml 1 ml 5 ml 1 ml 5 ml Column dimension 7 x 28 mm 1 ml 13 x 38 mm 5 ml 7 x 28 mm 1 ml 13 x 38 mm 5 ml 7 x 28 mm 1 ml 13 x 38 mm 5 ml Recommended flow rate BabyBio 1 ml BabyBio 5 ml 1 ml min 150 cm h 5 ml min 225 cm h 1 ml min 150 cm h 5 ml min 225 cm h 1 ml min 150 cm h 5 ml min 225 cm h Maximum flow rate BabyBio 1 ml BabyBio 5 ml 5 ml min 780 cm h 20 ml min 900 cm h 5 ml min 780 cm h 20 ml min 9...

Page 12: ... ml 1 x 1 ml 2 x 1 ml 5 x 1 ml 10 x 1 ml 45 200 101 45 200 102 45 200 103 45 200 104 BabyBio S 5 ml 1 x 5 ml 2 x 5 ml 5 x 5 ml 10 x 5 ml 45 200 105 45 200 106 45 200 107 45 200 108 BabyBio Q 1 ml 1 x 1 ml 2 x 1 ml 5 x 1 ml 10 x 1 ml 45 100 101 45 100 102 45 100 103 45 100 104 BabyBio Q 5 ml 1 x 5 ml 2 x 5 ml 5 x 5 ml 10 x 5 ml 45 100 105 45 100 106 45 100 107 45 100 108 BabyBio DEAE 1 ml 1 x 1 ml ...

Reviews: