Section 7. Installation
288
FieldCal()
Offset
'This program example demonstrates the use of FieldCal() in calculating and applying an
'offset calibration. An offset calibration compares the signal magnitude of a sensor to a
'known standard and calculates an offset to adjust the sensor output to the known value.
'The offset is then used to adjust subsequent measurements.
'This program demonstrates the offset calibration with the following procedure:
' -- Simulate a signal from a salinity sensor.
' -- Measure the 'sensor' signal.
' -- Calculate and apply an offset.
'
'You can set up the simulation by loading this program into the CR6 and interconnecting the
'following terminals with a jumper wire to simulate the salinity sensor signal as follows:
'
U11
---
U
1
'For the simulation, the value of the calibration standard and the initial 'sensor' signal
'are set automatically. Start the calibration routine by setting variable CalMode = 1. When
'CalMode = 6 (will occur automatically after 10 measurements), the routine is complete.
'Note the new value in variable SalinityOffset. Now enter the following millivolt value as
'the simulated sensor signal and note how the new offset is added to the measurement:
' SimulatedSalinitySignal = 1345
'NOTE: This program places a .cal file on the CPU: drive of the CR6. The .cal file must
'be erased to reset the demonstration.
'DECLARE SIMULATED SIGNAL VARIABLE AND SET INITIAL MAGNITUDE
Public
SimulatedSalinitySignal = 1350
'mg/l
'DECLARE CALIBRATION STANDARD VARIABLE AND SET MAGNITUDE
Public
KnownSalinity = 30
'mg/l
'DECLARE MEASUREMENT RESULT VARIABLE.
Public
Salinity
'DECLARE OFFSET RESULT VARIABLE
Public
SalinityOffset
'DECLARE VARIABLE FOR FieldCal() CONTROL
Public
CalMode
'DECLARE DATA TABLE FOR RETRIEVABLE CALIBRATION RESULTS
DataTable
(CalHist,NewFieldCal,200)
SampleFieldCal
EndTable
BeginProg
'LOAD CALIBRATION CONSTANTS FROM FILE CPU:CALHIST.CAL
'Effective after the zero calibration procedure (when variable CalMode = 6)
LoadFieldCal
(true)
Scan
(100,mSec,0,0)
Summary of Contents for CR6 Series
Page 2: ......
Page 4: ......
Page 6: ......
Page 32: ......
Page 36: ......
Page 38: ......
Page 76: ...Section 5 Overview 76 FIGURE 20 Half Bridge Wiring Example Wind Vane Potentiometer ...
Page 80: ...Section 5 Overview 80 FIGURE 23 Pulse Input Wiring Example Anemometer ...
Page 136: ......
Page 454: ...Section 8 Operation 454 FIGURE 104 Narrow Sweep High Noise ...
Page 459: ...Section 8 Operation 459 FIGURE 106 Vibrating Wire Sensor Calibration Report ...
Page 535: ...Section 8 Operation 535 8 11 2 Data Display FIGURE 121 CR1000KD Displaying Data ...
Page 537: ...Section 8 Operation 537 FIGURE 123 CR1000KD Real Time Custom ...
Page 538: ...Section 8 Operation 538 8 11 2 3 Final Storage Data FIGURE 124 CR1000KD Final Storage Data ...
Page 539: ...Section 8 Operation 539 8 11 3 Run Stop Program FIGURE 125 CR1000KD Run Stop Program ...
Page 541: ...Section 8 Operation 541 FIGURE 127 CR1000KD File Edit ...
Page 546: ......
Page 552: ......
Page 610: ...Section 11 Glossary 610 FIGURE 137 Relationships of Accuracy Precision and Resolution ...
Page 612: ......
Page 648: ......
Page 650: ......
Page 688: ......
Page 689: ......