4.6. Multicast Routing
4.6.1. Overview
The Multicast Problem
Certain types of Internet interactions, such as conferencing and video broadcasts, require a single
client or host to send the same packet to multiple receivers. This could be achieved through the
sender duplicating the packet with different receiving IP addresses or by a broadcast of the packet
across the Internet. These solutions waste large amounts of sender resources or network bandwidth
and are therefore not satisfactory. An appropriate solution should also be able to scale to large
numbers of receivers.
The Multicast Routing Solution
Multicast Routing solves the problem by the network routers themselves, replicating and forwarding
packets via the optimum route to all members of a group.
The IETF standards that allow multicast routing are the following:
•
Class D of the IP address space which is reserved for multicast traffic. Each multicast IP address
represent an arbitrary group of recipients.
•
The Internet Group Membership Protocol (IGMP) allows a receiver to tell the network that it is
a member of a particular multicast group.
•
Protocol Independent Multicast (PIM) is a group of routing protocols for deciding the optimal
path for multicast packets.
Underlying Principles
Multicast routing functions on the principle that an interested receiver joins a group for a multicast
by using the IGMP protocol. PIM routers can then duplicate and forward packets to all members of
such a multicast group, thus creating a distribution tree for packet flow. Rather than acquiring new
network information, PIM uses the routing information from existing protocols, such as OSPF, to
decide the optimal path.
Reverse Path Forwarding
A key mechanism in the multicast routing process is Reverse Path Forwarding. For unicast traffic, a
router is concerned only with a packet's destination. With multicast, the router is also concerned
with a packets source since it forwards the packet on paths which are known to be downstream,
away from the packet's source. This approach is adopted to avoid loops in the distribution tree.
Routing to the Correct Interface
By default, multicast packets are routed by NetDefendOS to the core interface (in other words, to
NetDefendOS itself). SAT Multiplex rules are set up in the IP rule set in order to perform forwarding
to the correct interfaces. This is demonstrated in the examples described later.
Note: Interface multicast handling must be On or Auto
For multicast to function with an Ethernet interface on any NetDefend Firewall, that
interface must have multicast handling set to On or Auto. For further details on this
see Section 3.3.2, “Ethernet Interfaces”.
4.6. Multicast Routing
Chapter 4. Routing
199
Summary of Contents for NetDefend DFL-260E
Page 27: ...1 3 NetDefendOS State Engine Packet Flow Chapter 1 NetDefendOS Overview 27...
Page 79: ...2 7 3 Restore to Factory Defaults Chapter 2 Management and Maintenance 79...
Page 146: ...3 9 DNS Chapter 3 Fundamentals 146...
Page 227: ...4 7 5 Advanced Settings for Transparent Mode Chapter 4 Routing 227...
Page 241: ...5 4 IP Pools Chapter 5 DHCP Services 241...
Page 339: ...6 7 Blacklisting Hosts and Networks Chapter 6 Security Mechanisms 339...
Page 360: ...7 4 7 SAT and FwdFast Rules Chapter 7 Address Translation 360...
Page 382: ...8 3 Customizing HTML Pages Chapter 8 User Authentication 382...
Page 386: ...The TLS ALG 9 1 5 The TLS Alternative for VPN Chapter 9 VPN 386...
Page 439: ...Figure 9 3 PPTP Client Usage 9 5 4 PPTP L2TP Clients Chapter 9 VPN 439...
Page 450: ...9 7 6 Specific Symptoms Chapter 9 VPN 450...
Page 488: ...10 4 6 Setting Up SLB_SAT Rules Chapter 10 Traffic Management 488...
Page 503: ...11 6 HA Advanced Settings Chapter 11 High Availability 503...
Page 510: ...12 3 5 Limitations Chapter 12 ZoneDefense 510...
Page 533: ...13 9 Miscellaneous Settings Chapter 13 Advanced Settings 533...