background image

 

- 10 - 

 
 

TYPICAL SEQUENCE OF OPERATION 

 
 

The Dunham-Bush Water Cooled Screw Flooded Chiller 

depends mainly on its on-board controller for control. 

Operation described is for a two- compressor unit and is 

very similar for single or three-compressor units. 

For initial start-up, the following conditions must be met: 

D

 

Power supply to unit energized 

D

 

Compressor circuit breakers in the "on" position 

D

 

Control power switch on for at least 15 minutes.  

D

 

Compressor switches on 

D

 

Critical alarm is cleared at display panel 

D

 

Chilled water pump running and chilled water flow 

switch made 

D

 

Leaving chilled water temperature at least 2°F above 

setpoint 

D

 

All safety conditions satisfied 

After all above conditions are met, the controller will call 

for the lead compressor and the condenser water pump 

to start. After a one-minute delay, the first contactor (e.g. 

1 M-1) is energized followed by the second contactor 

(e.g. 1 M-2) after one second time delay. This provides 

reduced inrush stepped start. 

The compressor 15-minute anti-recycle timer is initiated 

at compressor start. 

The controller monitors compressor amps, volts, leaving 

water temperature, and evaporator and condenser 

pressures. The compressor cooling capacity is controlled 

by pulsed signals to load and unload solenoid valves on 

the compressor. When the compressor starts, it is fully 

unloaded, about 25% of its full load capacity. As the 

controller

 gives it load signals, capacity gradually 

increases. The rate of compressor loading is governed by 

ramp control which is adjustable in the computer. 

The controller responds to leaving chilled water 

temperature and its rate of change which is proportional 

and derivative control. If leaving chilled water temperature 

is within the deadband (+/-0.8°F from setpoint), no load or 

unload commands are given. If chilled water temperature 

is above deadband, the controller will continue loading 

the compressor until a satisfactory rate of decline is 

observed. If leaving chilled water temperature is below 

the deadband, the compressor is commanded to unload. 

Thus the compressor capacity is continuously modulated 

to match applied load and hold leaving chilled water 

temperature at setpoint. 

If the applied load is greater than one compressor can 

handle, it will load fully and then the controller will call for 

a second compressor. After one minute, the second 

compressor will start in the same manner as the first. 

Then both compressors will be commanded to adjust load 

to 50%. They are gradually loaded up together until the 

applied load is satisfied. In this way the two compressors 

share the load equally. 

If the applied load decreases to the point that both 

compressors are running at about 40% capacity, the 

controller shuts down the lag compressor and loads the 

remaining compressor to about 90%. If applied load 

decreases further, the remaining compressor unloads-

proportionally. If applied load decreases to less than the 

minimum capacity of one compressor, the leaving chilled 

water temperature will decline to 2°F below setpoint, at 

which time the lead compressor will shut down. It will 

restart automatically if leaving chilled water temp rises to 

2°F above setpoint and both 15 minute anti-recycle and 

one minute start delay timers are satisfied. 

During operation, the controller monitors the difference 

between condenser and evaporator pressures to insure 

that a minimum of 30 psi differential is available for 

compressor lubrication. If the difference falls below a 

minimum of 30 psi, the controller closes refrigerant flow 

control valves, starving the evaporator, causing 

evaporator pressure to drop, increasing differential 

pressure. This is especially helpful at startup, when warm 

chilled water and cold condensing water would cause a 

low head situation. This feature is called EPCAS: 

Evaporator Pressure Control at Startup. It is one of 

several proactive control features of the controller which 

overcome potential problems while continuing operation. 

Two additional proactive features are low suction and 

high discharge pressure override. If operating pressures 

approach trip level, compressors are unloaded as 

necessary to continue operation. 

 

 

Summary of Contents for WCFX-E Series

Page 1: ...Products that perform By people who care WCFX E Series 60Hz Water Cooled Rotary Screw Water Chillers Cooling Capacity 70 to 1000 TR 246 to 3517 kW R134a...

Page 2: ...atures 4 Operating Benefits 9 Typical Sequence of Operation 10 Physical Specifications 11 Dimensional Data 13 Floor Loading Diagram 19 Water Pressure Drop 20 Sound Pressure Data 26 Electrical Data 26...

Page 3: ...inimum downtime during rework of faulty or damaged compressor Dunham Bush can arrange to provide a substitute reworked compressors while the faulty compressor is being reworked or repaired D Vapor inj...

Page 4: ...exclusive electronically initiated hydraulically actuated control arrangement Positive Displacement Direct Connected The compressor is directly connected to the motor without any complicated gear sys...

Page 5: ...space is decreased and the gas pressure consequently increased Discharge Phase At a point determined by the designed built in compression ratio the discharge port is covered and the compressed gas is...

Page 6: ...hiller water temperature derivative D Evaporator Pressure D Condenser Pressure D Compressor amp draw of each compressor D Compressor elapsed run time of each compressor D Compressor starts status D Oi...

Page 7: ...em however is very similar to centrifugal water chillers and is shown in the refrigerant cycle diagram below Liquid refrigerant enters the flooded evaporator uniformly where it absorbs heat from water...

Page 8: ...g may be exposed to temperatures below freezing glycol protection is recommended if the water is not drained The recommended protection is 15 F below the minimum ambient temperature in the equipment r...

Page 9: ...D ASHRAE Standard 15 Safety Code for Mechanical Refrigeration D National Electric Code D IEEE D Optional PED Refrigerant Compatibility D Designed to operate with environmentally safe and economically...

Page 10: ...emperature is below the deadband the compressor is commanded to unload Thus the compressor capacity is continuously modulated to match applied load and hold leaving chilled water temperature at setpoi...

Page 11: ...kW 776 6 692 8 874 3 750 9 1028 4 951 3 1162 0 1168 3 1320 6 10 4 kcal h 66 8 59 6 75 2 64 6 88 4 81 8 99 9 100 5 113 6 Min Unit Capacity 25 12 5 25 12 5 25 12 5 12 5 25 12 5 Power 460 3P 60Hz Compres...

Page 12: ...2650 8 3080 2 3223 7 3354 2 3510 7 10 4 kcal h 204 8 201 2 210 9 219 6 228 0 264 9 277 2 288 5 301 9 Min Unit Capacity 8 5 12 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 Power 460 3P 60Hz Compressor Model Qty 1227...

Page 13: ...630 16 7 16 417 14 7 16 366 124 1 4 3157 4 102 45 3 16 1148 5 127 6 152 WCFX E 15S 2 1 16 53 16 7 8 429 101 7 8 2588 6 153 1 9 16 39 12 3 8 315 5 5 8 143 83 1 4 2115 28 1 8 715 18 3 16 462 15 3 8 391...

Page 14: ...530 164 3 16 4171 11 16 17 3 1 2 89 6 7 8 175 15 7 8 403 22 5 16 567 30 3 4 782 5 5 8 143 70 1778 6 152 8 203 WCFX E 30S 20 508 40 11 16 1033 40 11 16 1033 40 11 16 1033 25 635 58 1 2 1486 53 1 2 135...

Page 15: ...3 16 3866 29 1 4 743 5 5 8 143 5 5 8 143 5 5 8 143 5 5 8 143 19 3 16 487 20 3 16 513 15 1 4 387 15 1 4 387 15 1 4 387 5 5 8 143 6 7 8 175 6 7 8 175 12 5 8 321 12 5 8 321 12 7 8 327 18 1 4 464 78 7 8 2...

Page 16: ...64 1 2 1638 64 1 2 1638 86 11 16 2202 7 8 22 1 7 8 48 18 15 16 480 196 3 4 4997 1 1 2 38 3 7 8 99 8 5 8 219 20 508 28 5 16 719 39 11 16 1008 7 3 8 187 80 2032 10 254 10 254 WCFX E 60T 15 381 55 1397...

Page 17: ...2057 86 2184 7 8 22 1 7 8 48 20 5 8 524 213 3 4 5429 1 1 2 38 4 1 4 108 10 3 16 259 25 1 2 648 27 5 16 694 41 1 2 1055 8 1 8 207 88 2235 12 305 12 305 WCFX E 84 15 381 60 11 16 1541 60 11 16 1541 60...

Page 18: ...1 11 16 1312 10 3 4 273 99 2515 14 356 14 356 WCFX E 118 20 508 52 7 16 1331 52 7 16 1331 52 7 16 1331 27 686 72 5 8 1845 72 5 8 1845 129 9 16 3291 7 8 22 1 7 8 48 17 7 8 454 199 5055 1 1 2 38 3 1 2 8...

Page 19: ...50T 2521 1144 3385 1536 2403 1090 3181 1443 2285 1036 2976 1350 2166 983 2771 1257 21688 9837 54T 2696 1223 3713 1684 2579 1170 3489 1583 2461 1116 3265 1481 2343 1063 3041 1380 23588 10699 57T 2811...

Page 20: ...6T 1 10 100 1000 10000 Pressure Drop ft wg Water Flow Rate USgpm 1 10 100 100 1000 10000 Pressure Drop ft wg Water Flow Rate USgpm 46T 50T 73T 75T 81T 54T 57T 60T 20T 22T 24T 27T 30T 38T 40T 20T 22T 2...

Page 21: ...ate USgpm WATER PRESSURE DROP IMPERIAL UNITS 1C EVAPORATOR 3 PASS a Single Compressor b Twin Compressors c Three Compressors 2A CONDENSER 1 PASS a Single Compressor b Twin Compressors c Three Compress...

Page 22: ...Rate USgpm WATER PRESSURE DROP IMPERIAL UNITS 2B CONDENSER 2 PASS a Single Compressor b Twin Compressors c Three Compressors 2C CONDENSER 3 PASS a Single Compressor b Twin Compressors c Three Compress...

Page 23: ...10 100 1000 100 1000 10000 Pressure Drop kPa Water Flow Rate m hr 57T 60T 73T 75T 81T 10 100 100 1000 10000 Pressure Drop kPa Water Flow Rate m hr 20T 22T 24T 40T 38T 27T 30T 54T 50T 46T 40T 20T 22T 2...

Page 24: ...WATER PRESSURE DROP SI UNITS 1C EVAPORATOR 3 PASS a Single Compressor b Twin Compressors c Three Compressors 2A CONDENSER 1 PASS a Single Compressor b Twin Compressors c Three Compressors Note Above...

Page 25: ...ER PRESSURE DROP SI UNITS 2B CONDENSER 2 PASS a Single Compressor b Twin Compressors c Three Compressors 2C CONDENSER 3 PASS a Single Compressor b Twin Compressors c Three Compressors Note Above water...

Page 26: ...0 408 3 612 4 20S 460VAC 10 400 200 1222 1 154 499 749 20T 460VAC 10 300 200 1210 2 78 0 2 283 0 2 424 5 2 22T 460VAC 10 400 200 1210 1 1212 1 78 0 104 0 283 0 392 0 424 5 588 0 23S 460VAC 10 400 200...

Page 27: ...27 TYPICAL WIRING SCHEMATIC Two Compressors Unit...

Page 28: ...28 TYPICAL WIRING SCHEMATIC...

Page 29: ...29 TYPICAL WIRING SCHEMATIC...

Page 30: ...30 TYPICAL WIRING SCHEMATIC...

Page 31: ...31 TYPICAL WIRING SCHEMATIC...

Page 32: ...only the capacity required for the variable heating load This would enable the remainder of the base cooling load to be handled by a separate chiller utilizing evaporator entering condensing water tem...

Page 33: ...e point floating or tri state control and the analog can be used to drive a 0 10 vdc actuator Thus even though there has been a trend toward fan cycling control of cooling towers it is not a device th...

Page 34: ...ages can be controlled via an Equipment Management Center D Unit mounted disconnect switch 400 to 575 volts applications D Flanged semi hermetic compressor D Discharge service valve for MSC 226 series...

Page 35: ...ompressor loading based on leaving chilled water temperature It shall provide for high and low refrigerant pressure protection low oil level protection evaporator water freeze protection sensor error...

Page 36: ......

Reviews: