50
ES
14.7 LA PROTECCIÓN DIFERENCIAL SE DISPARA DESPUÉS DEL CIERRE
DEL INTERRUPTOR
Derivación a tierra de corriente
por daños en el aislamiento del
motor, de los cables o de otros
componentes eléctricos
- Verificar y sustituir el componente
eléctrico a tierra
- Llamar a un electricista especializado
- Formación de agua de condensación
en el motor
- Presencia de cuerpos extraños
14.8 LA BOMBA DA ALGUNAS VUELTAS EN SENTIDO CONTRARIO A LAS
PARADAS
Pérdidas en la válvula de pie
Verificar, limpiar o sustituir
Pérdidas en la tubería de
aspiración
Verificar y reparar
15. DOCUMENTACIÓN TÉCNICA ANEXA
15.1 TENSIONES ESTÁNDARES INDICADAS EN LA PLACA DE
CARACTERÍSTICAS CON LAS TOLERANCIAS RESPECTIVAS
[kW]
Frecuencia
[Hz]
Fase
[~]
UN [V] ± %
≤ 0.55
50
1 ~
230 ± 10%
60
220 ± 10%
0.37 ÷ 4.0
50
3 ~
230 Δ / 400 Y ± 10%
60
220 Δ / 380 Y - 5% /+ 10%
460 Y ± 10%
≥ 5.5
50
3 ~
400 Δ / 690 Y ± 10%
60
380 Δ - 5% /+ 10%
460 Δ ± 10%
15.2 FACTORES DE REDUCCIÓN DE LA POTENCIA DEL MOTOR
Cuando la electrobomba está instalada en un lugar cuya temperatura ambiente es
mayor de 40°C y/o su cota altimétrica es superior a 1000 m sobre el nivel del mar,
la potencia que puede suministrar el motor se reduce.
La tabla que se anexa indica los factores de reducción en función de la
temperatura y de la cota. Para evitar sobrecalentamientos, el motor se debe
cambiar con otro cuya potencia nominal multiplicada por el factor correspondiente
a la temperatura y a la cota ambiental sea mayor o igual que la del motor estándar.
El motor estándar se puede utilizar sólo si el usuario puede aceptar una reducción
del caudal, obtenida estrangulando la descarga, hasta la corriente absorbida por
un factor igual al de corrección.
15.3 TABLA DE PRESIÓN MÁXIMA DE FUNCIONAMIENTO
Presión indicada en base al número de rotores.
15.4 Cavitación
Como bien se conoce, la cavitación es un fenómeno destructivo para las bombas,
que se produce cuando el agua aspirada se transforma en vapor dentro de la
bomba. Las bombas EVMS están equipadas con partes hidráulicas internas en
acero inoxidable. Por lo tanto, éstas sufren la cavitación menos que otras
realizadas con materiales menos valiosos, pero también pueden ser afectadas
por este fenómeno.
Es por ello que es necesario instalar las bombas respetando las leyes físicas y las
reglas relativas a los fluidos y a las bombas.
Indicamos aquí los resultados prácticos de dichas reglas y leyes físicas.
En condiciones ambientales estándares (15°C, y a nivel del mar), el agua se
transforma en vapor cuando está sujeta a una depresión mayor de 10.33 m. Por
esto, 10.33 m es la altura máxima teórica de levantamiento del agua. Como todas
las bombas centrífugas, las bombas EVMS no logran aprovechar toda la altura
de levantamiento teórica a causa de una pérdida interna llamada NPSHr, que
se debe sustraer. Por tanto, la capacidad de aspiración teórica de cada bomba
EVMS es de 10.33 mm menos su NPSHr en el punto de trabajo considerado.
El NPSHr de las bombas EVMS se puede consultar en las curvas de catálogo y
se debe considerar ya en la fase de selección de la bomba.
Cuando la bomba esta colocada debajo del nivel del líquido o debe aspirar agua
fría desde 1 o 2 m con tubo corto, con una o dos curvas amplias, el NPSHr se
puede pasar por alto. El NPSHr es más importante mientras más difícil es la
instalación. La instalación es difícil cuando:
a) El desnivel de aspiración es elevado;
b) El tubo de aspiración es largo y/o tiene muchas curvas y/o tiene muchas
válvulas (grandes pérdidas de carga en aspiración);
c) La válvula de pie tiene una pérdida de carga elevada (elevadas pérdidas de
carga en aspiración);
d) La bomba se utiliza a un caudal próximo al caudal máximo de placa (el
NPSHr aumenta al aumentar el caudal a un valor superior al de máximo
T(°C)
Cota (m.a.s.l.)
1000
1500
2000
2500
40
1
0.96
0.94
0.90
45
0.95
0.92
0.90
0.88
50
0.92
0.90
0.87
0.85
55
0.88
0.85
0.83
0.81
60
0.83
0.82
0.80
0.77
65
0.79
0.76
0.74
0.72
Pmáx
50 Hz
EVMS1
EVMS3
EVMS5
EVMS10
EVMS15
1.6
2 ÷ 26
2 ÷ 21
2 ÷ 17
2 ÷ 15
1 ÷ 11
2.5
27 ÷ 39
23 ÷ 33
19 ÷ 27
16 ÷ 23
12 ÷ 17
Pmáx
50 Hz
EVMS20
EVMS32
EVMS45
EVMS64
EVMS90
1.6
1 ÷ 9
1 ÷ 7
1 ÷ 5
1 ÷ 5
1 ÷ 4
2.5
10 ÷ 16
8 ÷ 11
6 ÷ 9
6 ÷ 8
5 ÷ 6
3.0
-
12 ÷ 14
-
-
-
3.5
-
-
10 ÷ 13
-
-
Pmáx
60 Hz
EVMS1
EVMS3
EVMS5
EVMS10
EVMS15
1.6
2 ÷ 18
2 ÷ 15
2 ÷ 12
1 ÷ 10
1 ÷ 7
2.5
20 ÷ 29
16 ÷ 23
13 ÷ 19
11 ÷ 16
8 ÷ 12
Pmáx
60 Hz
EVMS20
EVMS32
EVMS45
EVMS64
EVMS90
1.6
1 ÷ 6
1 ÷ 5
1 ÷ 4
1 ÷ 3
1 ÷ 3
2.5
7 ÷ 10
6 ÷ 8-2
5 ÷ 6
4 ÷ 5
4
3.0
-
8-0 ÷ 10
-
-
-
3.5
-
-
7
-
-
Summary of Contents for EVMS 1
Page 85: ...85 12 13 14 9 8 10 11 A EVMS 1 3 5 10 15 20 3 Nm...
Page 87: ...87 A EVMS 32 45 64 90 without ball bearing 9 10 11 12 13 14 15 5 Nm 2 min...
Page 88: ...88 A EVMS 32 45 64 90 with ball bearing 2 min 1 2 3 4 5 7 6 M8 20 Nm M12 40 Nm M16 70 Nm...
Page 91: ...91 E EVMS 1 3 5 10 15 20 4 kW 1 2 3 4 5 6 7 8 9 10 3 Nm M6 10 Nm 11 12...
Page 92: ...92 E EVMS 1 3 5 10 15 20 5 5 kW 1 2 3 4 5 6 7 8 9 10 11 12 3 Nm M8 18 Nm M10 50 Nm...
Page 97: ...97...
Page 98: ...98...
Page 99: ...99...