background image

REGENERATIVE 

 

SINUS PENTA

  

APPLICATION  
 
 

6/

140

 

0

 

1

 

4

 

 

2.

 

INSTALLATION

 

INSTRUCTIONS 

2.1.

 

OVERVIEW 

 

The drives of the SINUS PENTA series can be used as regenerative feeders. 
 
The Penta becomes a feeder absorbing or delivering sinusoidal current to the grid with a unitary power factor; 
it is called a regenerative feeder because a bidirectional power flow can be obtained. The regenerative feeder 
has a DC link output which is used for the power supply of one or more Elettronica Santerno inverters through 

the DC-bus terminals. 
 
The following benefits can be obtained: 
Absorption from the current mains with weak harmonic currents and unitary power factor; 
Recovery of the kinetic energy of the connected motor(s) during the braking stage (thus avoiding using braking 

resistors, which also cause overheating); 
Possibility of controlling connected motors having greater voltage ratings than the mains voltage (see Motors 
Having a Different Supply Voltage than the Mains Supply Voltage); 

 

The following pages explain how drives can be connected to the mains; current waveforms and harmonic 
currents are also given. As you will see, the Penta used as a regenerative drive allows obtaining great benefits. 
 
 

 

NOTE 

Current harmonics depend both on mains voltage distortion (the weaker the 

distortion, the weaker the current harmonics) and on drive power ratings (rated 
power ensures the best harmonic currents percentage). 

 
 
 

 
 

Summary of Contents for Sinus Penta Series

Page 1: ...s Elettronica Santerno is responsible for the device in its original setting Any changes to the structure or operating cycle of the device must be performed or authorized by the Engineering Department of Elettronica Santerno Elettronica Santerno assumes no responsibility for the consequences resulting by the use of non original spare parts Elettronica Santerno reserves the right to make any techni...

Page 2: ... 5 APPLICATIONS OF THE REGENERATIVE DRIVE 32 2 5 1 Motors Having a Different Supply Voltage than the Mains Supply Voltage 32 2 6 WIRING 33 2 6 1 Power Wiring for the Regenerative Drive Up to Size S64 included 33 2 6 2 Power Wiring for the Regenerative Drive Size S74 34 2 6 3 Signal Wiring for the Regenerative Drive 36 2 7 EXTERNAL COMPONENTS 37 2 7 1 Power Cable Cross sections and Electromechanica...

Page 3: ...f Programmable Parameters P550 to P574 98 3 7 ANALOG OUTPUTS MENU 105 3 7 1 Overview 105 3 8 DIGITAL OUTPUTS MENU 106 3 8 1 Overview 106 3 8 2 List of Programmable Parameters P580 and P581 106 3 9 AUXILIARY DIGITAL OUTPUTS MENU 108 3 9 1 Overview 108 3 9 2 List of Programmable Parameters P582 to P593 108 3 10 SETTING MEASURES FROM PT100 MENU 110 3 10 1 Overview 110 3 10 2 List of Programmable Para...

Page 4: ...C500 and C501 electric mains 68 Table 2 Codification of Measure M515 78 Table 3 Bits of measure M516 79 Table 4 Bits of measure M517 79 Table 5 Codification of the digital inputs 84 Table 6 Codification of the digital outputs 84 Table 7 Codification of the operating conditions of the Regenerative Sinus Penta 85 Table 8 List of parameters P500 to P522 87 Table 9 List of parameters P530 to P540 and ...

Page 5: ... is detailed on the last pages of this manual Download however is not normally required because the drive is already factory set for the Regenerative application 1 1 THE REGENERATIVE APPLICATON The Regenerative Penta drive allows exchanging ingoing outgoing power with sinusoidal currents weak current harmonics and with a unitary power factor The Regenerative application allows tuning the DC bus vo...

Page 6: ... with weak harmonic currents and unitary power factor Recovery of the kinetic energy of the connected motor s during the braking stage thus avoiding using braking resistors which also cause overheating Possibility of controlling connected motors having greater voltage ratings than the mains voltage see Motors Having a Different Supply Voltage than the Mains Supply Voltage The following pages expla...

Page 7: ...APPLICATION 7 140 0 1 2 3 4 TYPE OF INSTALLATION Using a regenerative drive MAINS SIDE CURRENT Drive operating at rated current MAINS SIDE CURRENT SPECTRUM Figure 1 Mains side current obtained when a regenerative drive is used ...

Page 8: ...current is to be installed between the regenerative drive and the mains Using the drive as a regenerative feeder is particularly useful when the motor connected to the drive frequently operates as a generator e g lifting applications test benches etc Energy is then delivered to the mains under a sinusoidal waveform and with a unitary power factor thus ensuring energy saving and avoiding using brak...

Page 9: ...es are considered If two identical drives are used one as a feeder and one as a motor controller failures could occur because the minimum carrier frequency required for the regenerative application is 5kHz up to S30 included and 4kHz for other drive sizes The application tables are shown below Based on the motor power and the type of application light standard heavy strong they contain the size of...

Page 10: ... 30 0025 0025 22 30 0030 0038 0035 22 30 0030 0030 25 35 0030 0030 S10 22 30 0035 0038 0035 22 30 0035 0035 28 38 0035 0038 11 15 0016 0016 0016 15 20 0016 0016 15 20 0016 0017 15 20 0017 0017 0017 18 5 25 0017 0025 18 5 25 0017 0017 15 20 0020 0020 0020 18 5 25 0020 0025 18 5 25 0020 0020 22 30 0025 0034 0025 22 30 0025 0025 22 30 0025 0025 22 30 0030 0034 0030 22 30 0030 0030 25 35 0030 0030 30 ...

Page 11: ...0 680 0457 0457 S60 450 610 0524 0598 0524 500 680 0524 0524 560 760 0524 0524 500 680 0598 0598 0598 560 760 0598 0598 630 860 0598 0748 560 760 0748 0748 0748 630 860 0748 0748 710 970 0748 0831 S64 710 970 0831 0964 0964 800 1090 0831 0964 900 1230 0831 0964 900 1230 0964 0964 0964 1000 1360 0964 0964 1100 1500 0964 0964 1000 1360 1130 1130 1130 1170 1600 1130 1296 1270 1730 1130 1130 S74 1170 ...

Page 12: ...30 0030 S10 22 30 0035 0038 0035 25 35 0035 0038 28 38 0035 0038 9 2 12 5 0016 0016 0016 11 15 0016 0016 15 20 0016 0016 11 15 0017 0017 0017 11 15 0017 0025 15 20 0017 0017 15 20 0020 0020 0020 15 20 0020 0025 18 5 25 0020 0020 18 5 25 0025 0025 0025 18 5 25 0025 0025 22 30 0025 0025 22 30 0030 0034 0030 22 30 0030 0030 25 35 0030 0030 25 35 0034 0034 0034 30 40 0034 0034 30 40 0034 0034 S12 30 4...

Page 13: ...8 0598 560 760 0598 0598 630 860 0598 0598 560 760 0748 0748 0748 630 860 0748 0748 710 970 0748 0748 S64 630 860 0831 0831 0831 780 1060 0831 0831 800 1090 0831 0831 800 1090 0964 0964 0964 900 1230 0964 0964 1000 1360 0964 0964 900 1230 1130 1130 1130 1100 1500 1130 1296 1170 1600 1130 1130 S74 1100 1500 1296 1296 1240 1690 1296 1296 1340 1830 1296 1296 Please contact Elettronica Santerno ...

Page 14: ... 0025 0025 18 5 25 0025 0025 18 5 25 0025 0025 18 5 25 0030 0030 0030 22 30 0030 0030 22 30 0030 0030 S10 22 30 0035 0038 0035 25 35 0035 0038 28 38 0035 0038 9 2 12 5 0016 0016 0016 11 15 0016 0016 12 5 17 0016 0016 9 2 12 5 0017 0017 0017 11 15 0017 0017 12 5 17 0017 0017 11 15 0020 0020 0020 15 20 0020 0020 15 20 0020 0020 15 20 0025 0025 0025 18 5 25 0025 0025 18 5 25 0025 0025 18 5 25 0030 00...

Page 15: ...0 0457 0457 450 610 0457 0457 S60 355 480 0524 0524 0524 450 610 0524 0524 500 680 0524 0524 400 550 0598 0598 0598 500 680 0598 0598 560 760 0598 0598 500 680 0748 0748 0748 560 760 0748 0748 630 860 0748 0748 S64 560 760 0831 0831 0831 630 860 0831 0831 710 970 0831 0831 710 970 0964 0964 0964 800 1090 0964 0964 900 1230 0964 0964 800 1090 1130 1130 1130 900 1230 1130 1130 1000 1360 1130 1130 S7...

Page 16: ...5 0025 0025 15 20 0025 0025 15 20 0025 0025 15 20 0030 0030 0030 18 5 25 0030 0030 18 5 25 0030 0030 S10 18 5 25 0035 0035 0035 22 30 0035 0035 28 38 0035 0035 7 5 10 0016 0016 0016 9 2 12 5 0016 0016 11 15 0016 0016 7 5 10 0017 0017 0017 9 2 12 5 0017 0017 12 5 17 0017 0017 9 2 12 5 0020 0020 0020 11 15 0020 0020 12 5 17 0020 0020 11 15 0025 0025 0025 15 20 0025 0025 15 20 0025 0025 15 20 0030 00...

Page 17: ...450 0457 0457 375 510 0457 0457 S60 315 430 0524 0524 0524 375 510 0524 0524 400 550 0524 0524 355 480 0598 0598 0598 400 550 0598 0598 450 610 0598 0598 400 550 0748 0748 0748 500 680 0748 0748 560 760 0748 0748 S64 450 610 0831 0831 0831 560 760 0831 0831 630 860 0831 0831 560 770 0964 0964 0964 710 970 0964 0964 800 1090 0964 0964 710 970 1130 1130 1130 800 1090 1130 1130 900 1230 1130 1130 S74...

Page 18: ...020 12 5 17 0025 0038 0038 12 5 17 0030 0038 0038 S10 12 5 17 0035 0038 0038 11 15 0023 0023 0023 16 20 0033 0033 0033 S12 18 5 25 0037 0037 0037 18 5 25 0038 0038 0038 22 30 0040 0049 0040 S15 25 35 0049 0060 0060 28 38 0060 0067 0060 30 40 0067 0067 0067 37 50 0074 0074 0074 S20 45 60 0086 0113 0113 55 75 0113 0113 0113 65 90 0129 0129 0129 70 95 0150 0179 0150 S30 75 100 0162 0179 0179 90 125 0...

Page 19: ...5 0020 11 15 0025 0025 0025 12 5 17 0030 0038 0035 S10 12 5 17 0035 0038 0035 9 2 12 5 0023 0023 0023 11 15 0033 0033 0033 S12 15 20 0037 0037 0037 15 20 0038 0038 0038 18 5 25 0040 0040 0040 S15 22 30 0049 0049 0049 25 35 0060 0060 0060 30 40 0067 0067 0067 37 50 0074 0074 0074 S20 40 55 0086 0086 0086 45 60 0113 0113 0113 55 75 0129 0129 0129 65 90 0150 0179 0150 S30 75 100 0162 0179 0179 80 110...

Page 20: ... 5 10 0020 0020 0020 9 2 12 5 0025 0025 0025 11 15 0030 0030 0030 S10 12 5 17 0035 0035 0035 7 5 10 0023 0023 0023 11 15 0033 0033 0033 S12 15 20 0037 0037 0037 15 20 0038 0038 0038 15 20 0040 0040 0040 S15 18 5 25 0049 0049 0049 22 30 0060 0060 0060 25 35 0067 0067 0067 30 40 0074 0074 0074 S20 32 45 0086 0086 0086 45 60 0113 0113 0113 50 70 0129 0129 0129 55 75 0150 0150 0150 S30 65 90 0162 0179...

Page 21: ... 5 0020 0020 0020 7 5 10 0025 0025 0025 9 2 12 5 0030 0030 0030 S10 11 15 0035 0035 0035 5 5 7 5 0023 0023 0023 7 5 10 0033 0033 0033 S12 11 15 0037 0037 0037 12 5 17 0038 0038 0038 12 5 17 0040 0040 0040 S15 15 20 0049 0049 0049 18 5 25 0060 0060 0060 20 27 0067 0067 0067 22 30 0074 0074 0074 S20 25 35 0086 0086 0086 30 40 0113 0113 0113 37 50 0129 0129 0129 45 60 0150 0150 0150 S30 55 75 0162 01...

Page 22: ...64 1270 1730 0964 0964 1750 2380 1130 1130 1130 1460 1990 1130 1130 S74 2010 2740 1296 1670 2280 1296 Please contact Elettronica Santerno 2 2 10 STANDARD APPLICATIONS OVERLOAD UP TO 140 575 690VAC POWER SUPPLY Rated Motor Voltage 600 690VAC Rated Motor Voltage 575VAC SIZE MOTOR DRIVE REGENERATIVE DRIVE MOTOR DRIVE REGENERATIVE DRIVE Max Applicable Motor Power Max Applicable Motor Power kW HP Size ...

Page 23: ...0964 0964 0964 1000 1360 0964 0964 1400 1910 1130 1130 1130 1170 1600 1130 1130 S74 1610 2190 1296 1296 1296 1340 1830 1296 1296 2 2 12 STRONG APPLICATIONS OVERLOAD UP TO 200 575 690VAC POWER SUPPLY Rated Motor Power 600 690VAC Rated Motor Power 575VAC SIZE MOTOR DRIVE REGENERATIVE DRIVE MOTOR DRIVE REGENERATIVE DRIVE Max Applicable Motor Power Max Applicable Motor Power kW HP Size of MOTOR SINUS ...

Page 24: ...0 5 44 3 42 0 44 3 48 8 53 2 0 58 0038 65 75 37 9 39 9 43 9 48 0 43 8 46 1 50 8 55 5 0 60 0040 72 75 42 0 44 2 48 7 53 2 43 7 46 1 50 7 55 4 0 64 S15 0049 75 96 43 6 45 9 50 6 55 3 56 0 59 0 65 0 71 0 0 77 0060 88 112 51 2 54 0 59 5 64 9 65 4 68 9 75 9 82 9 0 83 0067 103 118 59 9 63 2 69 6 76 0 68 8 72 5 79 8 87 2 0 99 0074 120 144 69 9 73 7 81 2 88 6 84 1 88 6 97 6 106 6 1 05 S20 0086 135 155 78 ...

Page 25: ...regenerative drive Imax max current produced by the drive for 120sec every 20min up to S30 and for 60sec every 10min for S40 and greater NOTE Output power is intended for the power supply of one or more SINUS K inverters PENTA drives Any other applications must be authorized by Elettronica Santerno ...

Page 26: ... 20 0 20 9 24 1 25 2 0 60 0038 65 75 21 7 22 7 25 1 26 3 0 60 0040 72 75 24 0 25 1 25 1 26 2 0 64 S15 0049 75 96 26 7 27 9 32 1 33 6 0 75 0060 88 112 29 3 30 7 37 5 39 3 0 83 0067 103 118 34 3 35 9 39 4 41 3 0 99 0074 120 144 40 1 41 9 48 3 50 5 1 05 S20 0086 135 155 45 1 47 2 51 9 54 3 1 16 0113 180 200 60 0 62 8 66 9 70 0 1 65 0129 195 215 65 1 68 2 72 0 75 3 1 65 0150 200 270 66 9 70 0 90 8 95 ...

Page 27: ...regenerative drive Imax max current produced by the drive for 120sec every 20min up to S30 and for 60sec every 10min for S40 and greater NOTE Output power is intended for the power supply of one or more SINUS K inverters PENTA drives Any other applications must be authorized by Elettronica Santerno ...

Page 28: ...3 8 4 5 0312 480 600 425 490 510 532 610 640 4 7 5 6 0366 550 660 490 560 585 585 672 703 5 3 6 4 0399 630 720 560 645 670 638 733 766 6 1 7 3 0457 720 880 640 735 765 780 896 937 7 0 8 4 0524 800 960 710 815 850 850 980 1020 7 8 9 3 0598 900 1100 800 915 960 975 1120 1170 8 7 10 5 0748 950 1300 840 965 1010 1150 1325 1385 9 2 11 1 S64 0831 1000 1440 890 1020 1065 1280 1470 1535 9 7 11 7 0964 1480...

Page 29: ...tables containing the drive specifications the motor drive loss is supposed to be the same as the regenerative drive loss The electric power absorbed by the motor can be calculated as follows Pmot Mechanical power motor performance or Pmot 1 73 Vmot Imot cosphimot where Vmot rated motor voltage Imot rated motor current cosphimot rated motor power factor b Overload The power obtained when the drive...

Page 30: ...min mains voltage The power transferred when the regenerative drive is overloaded is the following Pmaxreg 1 73 Vacmin Imax These values are given in the specification tables above EXAMPLE Dimensioning the regenerative drive for a motor drive unit including a SINUS PENTA 0020 4T and a 15kW 4 pole motor Motor features Type 4 pole ATA XL160L Rated power mechanical power 15kW Performance 0 9 Rated vo...

Page 31: ...mot Ilim cosphimot Polmot 20 7kW The drive loss is to be compared to the overload current Polrgn 20 7 0 35 Ilim Imot 0 35 Ilim Imot 21 54kW From the 4T Class Regenerative Drive table the continuous power and the overload power of a SINUS PENTA 0020 4T regenerative drive with 400VAC power supply is 18 3kW and 22 1kW respectively as a result the SINUS PENTA 0020 4T can be used The same result is giv...

Page 32: ... the bus voltage divided by 1 41 can be used or operation at constant torque can occur even when exceeding the rated motor frequency For example if the regenerative drive is factory set to generate 700VDC as the bus voltage the output voltage of the motor drive can be 496VAC Supposing that a standard 50Hz 400V motor is used the parameters relating to the rated frequency and the rated voltage of th...

Page 33: ... regenerative drive to the mains Those components allow matching output terminal commutated voltage to mains sinusoidal current they also allow filtering the current component at the drive commutation frequency The wiring diagram is shown below Figure 3 Wiring diagram for the electromechanical components of the regenerative drive up to Size S64 included NOTE Do not alter wiring when connecting the...

Page 34: ...low shows how to connect the interface panels supplied by Elettronica Santerno It also shows how to connect the electromechanical components allowing matching the output terminal commutated voltage with the mains sinusoidal voltage and filtering the current component at the drive commutation frequency Figure 4 Wiring diagram for electromechanical components for the regenerative drive Size S74 incl...

Page 35: ...mponents the equipment automatically detects the mains phase sequence NOTE If fuses are used special microswitches capable of detecting when a fuse opens are required Connect the fuse signal to the input for auxiliary alarms of the regenerative drive and activate the respective alarm see parameters C164 C166 ...

Page 36: ...r auxiliary contact closure 18 MDI5 Digital input for the state of the auxiliary contact in capacitor INT1 safety switch 30 31 MDO3 NO relay output for TL1 bypass contactor coil command 33 34 MDO4 NO relay output for regenerative drive ON to be series connected to the motor drive enabling chain Activate the ENABLE input MDI2 to enable the regenerative drive if it locks due to a fault activate the ...

Page 37: ...elow For the greatest drive sizes wiring with multiple conductors for the same phase is recommended For example 2x150 in the wire cross section column means that two parallel connected 150sqmm conductors per phase are used Multiple conductors must have the same length and must follow parallel paths so that current is evenly delivered at any frequency level Unparallel paths even if their length is ...

Page 38: ...20 30 10 1 2 1 5 40 40 45 0025 38 5 10 1 2 1 5 63 63 60 0030 38 5 10 1 2 1 5 63 63 60 S10 0035 41 0 5 10 20 6AWG 10 1 2 1 5 10 6AWG 100 100 60 0023 28 18 2 5 10 6AWG 63 63 60 0033 51 18 2 5 16 5AWG 100 100 100 S12 0037 60 0 5 25 12 4AWG 18 2 5 25 4AWG 100 100 100 0038 65 15 2 5 100 100 100 0040 72 15 2 5 100 100 100 S15 0049 75 0 5 25 12 4AWG 15 2 5 25 4AWG 125 100 100 0060 88 24 6 8 35 2AWG 125 1...

Page 39: ...x210 3x400kcmils 2000 2000 2 1000 S74 1296 1950 DC Bus 35 2x3x240 3x500kcmils 2500 2500 2 1200 Alternative to MCC1 CAUTION Always use the correct cable cross sections and enable the protecting devices provided for the drive Failure to do so will cause the non compliance to standard regulations of the system where the drive is installed NOTE Make sure that the pre charge contactor coil can be contr...

Page 40: ...RMS Current I2t 500V A2sec VAC 0007 20 412 04 16 16 49 FWP 15B 15 48 0008 660 FWP 20B 20 116 700 0010 0013 20 412 04 25 25 140 0015 0016 S05 0020 20 412 20 40 40 350 FWP 40B 40 236 0016 0017 0020 20 412 20 40 40 350 FWP 40B 40 236 0025 0030 20 412 20 63 63 980 FWP 60B 60 685 S10 0035 20 412 20 100 100 2800 FWP 100B 100 2290 0023 20 412 20 63 63 980 FWP 60B 60 685 0033 S12 0037 20 412 20 100 100 28...

Page 41: ...390000 S60 0524 20 622 32 1250 1225000 FWP 1200A 1200 690000 0598 170M6067 1400 1700000 0748 20 632 32 1400 1540000 170M6067 1400 1700000 S64 0831 20 688 32 1600 1344000 170M6069 1600 2700000 0964 2 20 632 32 1400 1540000 2 170M6067 1400 1700000 1130 2 20 632 32 1400 1540000 2 170M6067 1400 1700000 S74 1296 2 20 688 32 1600 1344000 2 170M6069 1600 2700000 ...

Page 42: ...2 32 30 0016 26 10 1 2 1 5 40 40 45 0017 30 10 1 2 1 5 40 40 45 0020 30 10 1 2 1 5 40 40 45 0025 38 5 10 1 2 1 5 63 63 60 0030 38 5 10 1 2 1 5 63 63 60 S10 0035 41 0 5 10 20 6AWG 10 1 2 1 5 10 6AWG 100 100 60 0016 26 10 1 2 1 5 40 40 45 0017 30 10 1 2 1 5 40 40 45 0020 30 10 1 2 1 5 40 40 45 0025 41 10 1 2 1 5 63 63 60 0030 41 0 5 10 20 6AWG 10 1 2 1 5 10 6AWG 63 63 60 0034 57 18 2 5 16 5AWG 100 1...

Page 43: ...1250 1000 0748 1000 DC Bus 35 1250 1250 1200 S64 0831 1200 DC Bus 35 3x240 3x500kcmils 1600 1600 1350 0964 1480 DC Bus 35 2x3x210 3x400kcmils 2000 2000 2 800 1130 1700 DC Bus 35 2x3x210 3x400kcmils 2000 2000 2 1000 S74 1296 1950 DC Bus 35 2x3x240 3x500kcmils 2500 2500 2 1200 CAUTION Always use the correct cable cross sections and enable the protecting devices provided for the drive Failure to do s...

Page 44: ...SINUS PENTA Model Mod No ARMS Current I2t 500V A2sec Vac Mod No ARMS Current I2t 500V A2sec Vac 0005 0007 50 126 06 16 115 FWP 15B 15 48 0009 0011 50 126 06 25 238 660 FWP 20B 20 116 S05 0014 50 140 06 40 427 FWP 40B 40 236 0016 0017 0020 50 140 06 40 427 FWP 40B 40 236 0025 0030 20 282 20 63 980 FWP 60B 60 685 S10 0035 20 282 20 100 2800 FWP 100B 100 2290 0016 0017 0020 50 140 06 40 427 FWP 40B 4...

Page 45: ...800 406000 FWP 800A 800 280500 0457 20 622 32 1000 882000 FWP 1000A 1000 390000 S60 0524 20 622 32 1250 1225000 FWP 1200A 1200 690000 0598 170M6067 1400 1700000 0748 20 632 32 1400 1540000 170M6067 1400 1700000 S64 0831 20 688 32 1600 1344000 170M6069 1600 2700000 0964 2 20 632 32 1400 1540000 2 170M6067 1400 1700000 1130 2 20 632 32 1400 1540000 2 170M6067 1400 1700000 S74 1296 2 20 688 32 1600 1...

Page 46: ... 0457 720 DC Bus 2x240 2x500kcmils 1000 800 800 0524 800 DC Bus 1250 1000 1000 0598 900 DC Bus 3x210 3x400kcmils 1250 1250 1000 0748 950 DC Bus 3x240 3x500kcmils 1250 1250 1000 S64 0831 1000 DC Bus 35 3x240 3x500kcmils 1600 1600 1200 0964 1480 DC Bus 35 2x3x210 3x400kcmils 2000 2000 2 800 1130 1700 DC Bus 35 2x3x210 3x400kcmils 2000 2000 2 1000 S74 1296 1950 DC Bus 35 2x3x240 3x500kcmils 2500 2500...

Page 47: ... Purpose Fuses JFHR2 UL approved Fuses Manufactured by SIBA Sicherungen Bau GmbH 200 kARMS Symmetrical A I C Bussmann Div Cooper UK Ltd 100 200 kARMS Symmetrical A I C Ratings Mod No Ratings Size SINUS PENTA Model Mod No ARMS Current I2 t 690V kA2 sec Vac ARMS Current I2 t 690V KA2 sec Vac 0250 20 622 32 500 150 FWP 500A 500 170 0312 20 622 32 630 300 FWP 600A 600 250 0366 0399 20 622 32 800 580 F...

Page 48: ... 5 2 12 5 0010 0013 0015 3 9 16 5 0016 S05 0020 2 2 30 0016 0017 0020 2 2 30 0025 0030 S10 0035 1 8 41 0023 1 8 41 0033 S12 0037 1 2 60 0038 0040 S15 0049 0 9 80 0060 0067 0 7 103 0074 S20 0086 0 5 135 0113 0129 0150 S30 0162 0 35 200 0179 0200 0216 S40 0250 0 27 320 0312 0366 S50 0399 0 15 550 0457 0524 S60 0598 0598 0 11 900 0748 S64 0831 0 08 1200 0964 1130 2 0 11 900 S74 1296 2 0 08 1200 ...

Page 49: ...12 5 0009 0011 S05 0014 3 9 16 5 0016 0017 0020 2 2 30 0025 0030 S10 0035 1 8 41 0016 0017 0020 2 2 30 0025 0030 1 8 41 0034 S12 0036 1 2 60 0038 0040 S15 0049 0 9 80 0060 0067 0 7 103 0074 S20 0086 0 5 135 0113 0129 0150 S30 0162 0 35 200 0179 0200 0216 S40 0250 0 27 320 0312 0366 S50 0399 0 15 550 0457 0524 S60 0598 0598 0 11 900 0748 S64 0831 0 08 1200 0964 1130 2 0 11 900 S74 1296 2 0 08 1200 ...

Page 50: ... 2 3 4 2 7 10 REGENERATIVE REACTANCE FOR 500 690VAC SUPPLY VOLTAGE Reactance Ratings Reactance Current DRIVE SIZE SINUS PENTA MODEL mH A 0250 0312 0 29 480 0366 0399 0457 0 20 720 0524 0598 0598 0748 S64 0831 0 15 1000 0964 1130 S74 1296 2 0 15 1000 ...

Page 51: ...08 2 6 12 5 0010 0013 0015 2 16 5 0016 S05 0020 1 1 30 0016 0017 0020 1 1 30 0025 0030 S10 0035 0 9 41 0023 0 9 41 0033 S12 0037 0 6 60 0038 0040 S15 0049 0 45 80 0060 0067 0 35 103 0074 S20 0086 0 25 135 0113 0129 0150 S30 0162 0 175 200 0179 0200 0216 S40 0250 0 135 320 0312 0366 S50 0399 0 08 550 0457 S60 0524 0598 0 06 900 0748 S64 0831 0 04 1200 0964 1130 0 028 1700 S74 1296 0 020 1950 ...

Page 52: ...6 12 5 0009 0011 S05 0014 2 16 5 0016 0017 0020 1 1 30 0025 0030 S10 0035 0 9 41 0016 0017 0020 1 1 30 0025 0030 0 9 41 0034 S12 0036 0 6 60 0038 0040 S15 0049 0 45 80 0060 0067 0 35 103 0074 S20 0086 0 25 135 0113 0129 0150 S30 0162 0 175 200 0179 0200 0216 S40 0250 0 135 320 0312 0366 S50 0399 0 08 550 0457 S60 0524 0598 0 06 900 0748 S64 0831 0 04 1200 0964 1130 0 028 1700 S74 1296 0 02 1950 ...

Page 53: ...2 3 4 2 7 13 FILTER REACTANCE FOR 500 690VAC SUPPLY VOLTAGE Filter Reactance Filter Reactance Current DRIVE SIZE SINUS PENTA MODEL mH A 0250 0312 0 145 480 0366 0399 0457 0 10 720 0524 0598 0598 0748 S64 0831 0 075 1000 0964 1130 S74 1296 0 038 1950 ...

Page 54: ...50 31 2T 4T IM0128164 0 9 80 335 300 200 320 40 2T 4T IM0128204 0 7 103 515 360 200 345 53 2T 4T IM0128244 0 5 135 580 360 240 350 64 2T 4T IM0128284 0 35 200 810 360 250 405 94 2T 4T IM0128324 0 27 320 1080 420 300 500 157 2T 4T IM0128364 0 15 550 1650 540 340 550 237 2T 4T IM0128404 0 11 900 2500 590 400 690 440 2T 4T IM0128444 0 08 1200 3100 675 440 735 605 2 7 14 2 5T 6T CLASSES Voltage Class ...

Page 55: ...240 180 245 24 2T 4T IM0128844 0 25 135 160 240 190 245 26 2T 4T IM0128884 0 175 200 220 300 210 325 43 2T 4T IM0128924 0 135 320 310 360 220 350 64 2T 4T IM0128964 0 08 550 540 360 290 350 85 2T 4T IM0128974 0 06 900 730 420 320 415 136 2T 4T IM0128984 0 04 1200 940 450 320 525 182 2T 4T IM0129684 0 028 1700 2080 510 400 610 281 2T 4T IM0129724 0 020 1950 1980 510 400 610 260 2 7 15 2 5T 6T CLASS...

Page 56: ...citors installed on the DC bus inside the drive capacitors of the component filter at the commutation frequency and the relevant safety switch measure circuits of the mains voltage Figure 6 shows the block diagram of the interface panel Figure 6 Block diagram of the interface panel NOTE Based on the drive size the interface panel can contain up to 5 filter capacitor units Each capacitor unit is pr...

Page 57: ... 0067 2T 4T 9 5 P010 Regenerative Interface 0086 2T 4T 170 386 261 5 150 366 5 7 9 5 Regenerative Interface 0162 2T 4T 23 10 P020 Regenerative Interface 0250 2T 4T 220 471 344 190 457 7 25 10 Regenerative Interface 0399 2T 4T 41 30 Regenerative Interface 0524 2T 4T 43 40 Regenerative Interface 0831 2T 4T 46 50 Regenerative Interface 0312 5T 6T 44 30 Regenerative Interface 0457 5T 6T 47 40 P030 Reg...

Page 58: ...4 NOTE Install the interface panel vertically as shown in the figure make sure to allow a min clearance of 50 mm on both sides and 10 mm on top and bottom for air circulation NOTE The maximum allowable ambient temperature for the interface panel is 50 C ...

Page 59: ...ect to T1 phase in the filter inductance DO NOT ALTER PHASE ARRANGEMENT 1 R2 Connect to R2 phase in the regenerative inductance M2 2 S2 Pre charge resistor connection Connect to S2 phase in the regenerative inductance 1 1 M3 2 2 Connection of NO auxiliary contact of the filter capacitor safety switch Connect to terminals 23 and 18 in the control board of the regenerative drive The rgn drive starts...

Page 60: ...ghtening Torque Recommended Cross section DRIVE SIZE SINUS PENTA MODEL INTERFACE PANEL SIZE INTERFACE PANEL MODEL sqmm AWG mm Nm A sqmm AWG sqmm AWG mm Nm sqmm AWG sqmm AWG mm Nm sqmm AWG 0007 0008 014 4T 5 0010 0013 0015 0016 S05 0020 035 4T 8 2 5 AWG14 1 5 AWG16 0016 0017 0020 0025 0030 S010 0035 035 4T 8 2 5 AWG14 1 5 AWG16 0023 035 4T 8 2 5 AWG14 1 5 AWG16 0033 S012 0037 049 4T 16 4 AWG10 2 5 ...

Page 61: ...312 0366 S050 0399 0457 399 4T 100 50 AWG14 6 AWG8 S060 0524 0598 0748 S064 0831 P030 831 4T 180 95 AWG 4 0 10 AWG6 0964 1130 S074 1296 2 P030 831 4T 25 95 4 4 0 33 15 20 18 0 95 AWG 4 0 0 5 10 AWG20 6 10 1 5 1 8 10 AWG6 0 14 2 5 AWG26 12 9 0 6 0 8 1 AWG18 ...

Page 62: ...erminal Cable Stripping Tightening Torque Recommended Cross section DRIVE SIZE SINUS PENTA MODEL INTERFACE PANEL SIZE INTERFACE PANEL MODEL sqmm AWG mm Nm A sqmm AWG sqmm AWG mm Nm sqmm AWG sqmm AWG mm Nm sqmm AWG 0005 0007 0009 0011 S05 0014 014 4T 5 2 5 AWG14 1 5 AWG16 0016 0017 0020 0025 0030 S010 0035 035 4T 8 2 5 AWG14 1 5 AWG16 0016 0017 0020 0025 0030 035 4T 8 2 5 AWG14 1 5 AWG16 0034 S12 0...

Page 63: ...250 4T 80 25 AWG4 6 AWG8 0312 0366 S050 0399 0457 399 4T 100 50 AWG14 6 AWG8 S060 0524 0598 0748 S064 0831 P030 831 4T 180 95 AWG 4 0 10 AWG6 0964 1130 S074 1296 2 P030 831 4T 25 95 4 4 0 33 15 20 180 95 AWG 4 0 0 5 10 AWG20 6 10 1 5 1 8 10 AWG6 0 14 2 5 AWG26 12 9 0 6 0 8 1 AWG18 ...

Page 64: ... Cable Stripping Tightening Torque Cable Cross section fitting the Terminal Cable Stripping Tightening Torque Cable Cross section fitting the Terminal Cable Stripping Tightening Torque Cable Cross section fitting the Terminal DRIVE SIZE SINUS PENTA MODEL sqmm AWG mm Nm A sqmm AWG sqmm AWG mm Nm sqmm AWG sqmm AWG mm Nm sqmm AWG 0250 INTERFACE PANEL MODEL 0312 0366 S050 0399 0457 399 6T 100 50 AWG14...

Page 65: ... dissipation so that the temperature of its frame does not exceed 80 C 2 8 3 EXAMPLE DIMENSIONING THE REGENERATIVE DRIVE AS A BRAKING UNIT Application bridge crane Weight to lift 10 000 kg Reducer performance 0 8 Lifting rate 1m s Acceleration required 1m s Mechanical power while lifting 98 1kW Overload required while lifting 10kW Mechanical power while lowering 78 48kW Overload required while low...

Page 66: ... define immunity and emission levels required for devices designed to operate in different environments The drives manufactured by ELETTRONICA SANTERNO are designed to operate under the most different conditions so they all ensure high immunity against RFI and high reliability in any environment The table below defines PDS Power Drive Systems of EN 61800 3 2002 which will become EN61800 3 issue 2 ...

Page 67: ...esses any harmonic currents in the mains EMI EMI filters integrated into the drive permit not to exceed the limits set in EN61800 3 issue 2 and its following amendment EN61800 3 A11 for the second environment category C3 External EMI filters are required if the regenerative drive is to be installed in the first environment Please contact Elettronica Santerno CAUTION Radio interference may occur if...

Page 68: ...e Rated Mains Voltage parameter C008 for the Sinus Penta to xT Regen where x is the voltage class of the drive being used 1 Wiring Follow the instructions given in the sections of this manual covering the drive wiring diagrams CAUTION Wrong wiring can cause the equipment malfunction 2 Power on Power on the drive the link to the ENABLE input terminal 15 is to be open so that the drive is disabled M...

Page 69: ... Drive Class 2T 4T 5T 6T Default value V 230 400 575 690 C500 Rated Mains Voltage Value to be set Rated voltage of the mains powering the drive Default value Hz 50 C501 Rated Mains Frequency Value to be set Rated frequency of the mains powering the drive Rated mains voltage V 200 240 380 415 440 460 480 500 575 600 660 690 Default value V 400 700 960 1100 P500 DC bus voltage setpoint Value to be s...

Page 70: ...3 input terminal 16 for some time or press the RESET key in the display keypad 10 Motor drive starting Start up the motor drive as described in the Installation Instructions manual When the motor drive is operating make sure that the DC bus voltage displayed in the Measure submenu is kept approx constant and equal to the setpoint also make sure that the mains is stable If load variations strongly ...

Page 71: ...al covering the drive wiring diagrams CAUTION Wrong wiring can cause the equipment malfunction 2 Power on Power on the drive the link to the ENABLE input terminal 15 is to be open so that the drive is disabled Make sure that the drive is set up for the regenerative application this is shown on the start page see below line 1 states that the regenerative unit is waiting for the Enable signal or on ...

Page 72: ...e Setpoint Value to be set V 400 700 960 1050 Press SAVE to store the new parameter value 5 Startup After synchronization with the mains the REF LED in the keypad comes on activate the ENABLE input terminal 15 the RUN LED in the keypad will come on and the DC bus voltage will be tuned to the setpoint in P500 6 Possible failures If no failure occurs go to step 8 otherwise check wiring The start scr...

Page 73: ...e Measure submenu is kept approx constant and equal to the setpoint also make sure that the mains is steady If load variations strongly affect DC bus voltage or if it is unsteady adjust the voltage regulator parameters P510 to P515 Voltage in the motor drive DC bus is equal to the rectified mains at constant speed or while accelerating while it increments to the regenerative setpoint in case of ab...

Page 74: ...METERS IDP PRODUCT MEA M537 M579 ADE MEASURES PAR P264 P269 DISPLAY KEYPAD CFG C140 C142 CONTROL METHOD MEA M582 M584 DC MEASURES PAR P500 P522 REFERENCE AND DC BUS PARAM REGULATOR CFG C164 C166 DIGITAL INPUTS MEA M031 M036 DIGITAL INPUTS PAR P530 P540 SETTING ADE REGISTERS CFG C211 C212 BRAKING UNIT MEA M056 M061 OUTPUTS PAR P545 P546 SETTING DC MEASURES CFG C255 C261 AUTORESET MEA M069 M072 TEMP...

Page 75: ... different meaning Menu n 4 Digital Inputs This menu includes the measures of the drive digital inputs as well as the functions allocated to the drive digital inputs Menu n 5 Outputs This menu includes the measures of the drive digital analog outputs and frequency outputs Menu n 6 Temperatures from PT100 This menu includes the temperature measures detected in the analog channels of ES847 I O expan...

Page 76: ... measure of the DC bus voltage M502 Mains Voltage M502 Range 0 10000 0 1000 0 V Address 1652 Function RMS of the measured line voltage M503 Drive Current M503 Range 0 65000 0 6500 0 A Address 1653 Function RMS of the current delivered by the drive M504 Mains Frequency M504 Range 10000 100 00 Hz Address 1654 Function Measured mains frequency M505 Delivered Active Power M505 Range 32000 3200 0 kW Ad...

Page 77: ...wer exchanged with the mains M508 Power Factor M508 Range 100 1 00 Address 1658 Function Current power factor exchanged with the mains M509 R S Voltage RMS M509 Range 0 10000 0 1000 0 V Address 1659 Function RMS of mains side VRS line voltage M510 S T Voltage RMS M510 Range 0 10000 0 1000 0 V Address 1660 Function RMS of mains side VST line voltage M511 T R Voltage RMS M511 Range 0 10000 0 1000 0 ...

Page 78: ...ne current M515 PLL Status for Synchronization with the Mains M515 Range 0 4 See Table 2 Address 1665 Function This parameter displays the status of the PLL Phase Locked Loop for the synchronisation with the AC mains The phase sequence is checked as well N Display Description 0 IDLE PLL stopped 1 INIT POS Positive phase sequence detected waiting for synchronization 2 INIT NEG Negative phase sequen...

Page 79: ...oltage 3 Phase R min voltage 4 Phase S min voltage 5 Phase T min voltage 6 Max frequency 7 Min frequency 8 PLL Fault Table 3 Bits of measure M516 M517 Mains Status 1 M517 Range 0 007Fh Bit controlled measure See Table 4 Address 1667 Function This parameter displays the status of the Mains Faults see the MAINS PARAMETERS MENU Bit N Description 0 Phase R Undervoltage 1 Phase S Undervoltage 2 Phase T...

Page 80: ...ction Active Energy exchanged between the system and the AC mains M539 Exchanged Reactive Energy M539 Range 999999999 99999999 9 kVARh Address 1689 Function Reactive Energy exchanged with the AC mains M541 Exchanged Active Power M541 Range 32000 3200 0 kW Address 1691 Function Active Power exchanged between the system and the AC mains M542 Exchanged Reactive Power M542 Range 32000 320 00 kVAR Addr...

Page 81: ...ss 1697 Function Apparent Power in phase R M548 Power Factor Phase R M548 Range 100 1 00 Address 1698 Function Power factor in phase R ratio between the Active Power and the Apparent Power M549 RMS Voltage Phase R M549 Range 32000 3200 0V Address 1699 Function Root mean square of the line voltage phase R M550 RMS Current Phase R M550 Range 32000 3200 0A Address 1700 Function Root mean square of th...

Page 82: ... Active Power and the Apparent Power M568 RMS Voltage Phase S M568 Range 32000 3200 0V Address 1718 Function Root mean square of the line voltage in phase S M573 RMS Current Phase S M573 Range 32000 3200 0A Address 1723 Function Root mean square of the line current in phase S M574 Active Power Phase T M574 Range 32000 3200 0kW Address 1724 Function Active Power in phase T M575 Reactive Power Phase...

Page 83: ...XPANSION BOARD CONFIGURATION MENU ES847 option board and additional external components must be installed to view the measures in this submenu please refer to the Sinus Penta s Installation Instructions manual M582 DC Current M582 Range 32000 3200 0A Address 1732 Function Calculation of the DC current measured with an optional external current transducer Positive sign for the Regenerative Penta ou...

Page 84: ...er Bit n Digital Input 0 MDI1 1 MDI2 ENABLE 2 MDI3 RESET 3 MDI4 Prech 4 MDI5 C Prot 5 MDI6 6 MDI7 7 MDI8 Table 5 Codification of the digital inputs 3 2 6 MENU N 5 OUTPUTS This submenu allows checking the status of the digital outputs of the drive Please refer to the standard Sinus Penta s measures For the Regenerative Sinus Penta digital outputs MDO3 and MDO4 are used for the closure of the coil i...

Page 85: ...RUN P kW Drive running it is delivering kW 3 ALR VR MIN KO The drive is disabled because the mains voltage has dropped below the min instantaneous voltage or the preset RMS see the MAINS PARAMETERS MENU 4 ALR VR MAX KO The drive is disabled because the mains voltage has exceeded the max instantaneous voltage or the preset RMS see the MAINS PARAMETERS MENU 5 ALR F MAINS KO The drive is disabled bec...

Page 86: ...eterization available for the regulator and set two error thresholds percent and two proportional integral error sets The PI regulator will then have the following features 1 For wrong values equal to or lower than the min threshold P514 the regulator parameters P510 and P511 will be used 2 For wrong values equal to or higher than the max threshold P515 the regulator parameters P512 and P513 will ...

Page 87: ... Threshold ENGINEERING 624 2 000 P515 Max Error Threshold ENGINEERING 625 14 000 P516 Regenerative Inductance ENGINEERING 626 Depending on size and voltage class P520 DC Bus Current Limit ENGINEERING 630 100 00 P521 Proportional Term of DC Bus Current Regulator ENGINEERING 631 P522 Integral Term of DC Bus Current Regulator ENGINEERING 632 Depending on size Table 8 List of parameters P500 to P522 P...

Page 88: ...9 99 ms with 650 00 Disable Default Depends on size and voltage class Level ENGINEERING Address 621 Function This parameter sets the integral term of the DC bus voltage regulator P512 DC Bus Voltage Regulator Proportional Term with Max Error P512 Range 0 65000 0 65 000 Default Depends on size and voltage class Level ENGINEERING Address 622 Function This parameter sets the proportional term of the ...

Page 89: ... the regulation error is higher than or equal to P515 the DC bus voltage regulator only uses proportional and integral terms P512 and P513 For the regulator functioning with P515 P514 see the section above P516 Regenerative Inductance P516 Range 50 32000 0 050 32 000mH Default Depends on size and voltage class see sections Regenerative Reactance for 200 240VAC Supply Voltage and Regenerative React...

Page 90: ...ze of the drive being used P521 DC bus Current Regulator Proportional Term P521 Range 0 65000 0 65000 Default Depends on the drive size Level ENGINEERING Address 631 Function This parameter sets the proportional term of the DC bus current regulator P513 DC bus Current Regulator Integral Term P522 Range 0 65000 0 649 99 ms with 650 00 Disable Default Depends on the drive size Level ENGINEERING Addr...

Page 91: ...the SETTING MEASURES FROM PT100 menu ADE is part of the name of the integrated circuit ADE7758 installed in ES847 board This integrated circuit ensures high precision three phase measurement of electric energy and is capable of detecting active energy reactive energy apparent energy and of calculating RMS values This integrated circuit complies with the following standards IEC 1036 IEC 61036 and f...

Page 92: ...982 983 984 0 P540 NoLoad Threshold ENGINEERING 953 0 Disabled I003 Energy Counter Reset ENGINEERING 1390 Inactive Table 9 List of parameters P530 to P540 and I003 P530 Number of Half line Cycles P530 Range 0 65535 0 65535 T 2 Default 10 10 T 2 Level ENGINEERING Address 956 Function This parameter sets the number of half line cycles for the accumulation of the active energy and the reactive energy...

Page 93: ...unction This gain affects both the current RMS value and the apparent power RMS value I I 1 P532 212 The overall calibration range is then 1 50 P533a b c Phase A B C Active Power Gain P533a b c Range 2048 2047 1 50 Default 0 1 Level ENGINEERING Address 964 965 966 Function This register calibrates the calculation of Active Power P P P 1 P533 212 The overall calibration range is then 1 50 P534a b c...

Page 94: ...8 2047 0 3 Default 0 0 Level ENGINEERING Address 973 974 975 Function Register for the correction of the current offset error P537a b c Phase A B C Active Power Offset P537a b c Range 2048 2047 0 015 Default 0 0 Level ENGINEERING Address 976 977 978 Function Register for the correction of the active power offset error P538a b c Phase A B C Reactive Power Offset P538a b c Range 2048 2047 0 015 Defa...

Page 95: ...c Range 64 63 2 72 1 36 50Hz 3 28 1 63 60Hz Default 0 0 Level ENGINEERING Address 982 983 984 Function This register adjusts the phase variation between voltage and current 1 LSB is equivalent to a delay of 1 2μs or to 2 4μs in advance The correction range is then 151 2μs 75 6μs i e 2 72 1 36 50Hz 3 28 1 63 60Hz ...

Page 96: ...n can be suspended when this happens Disable disabled threshold energy is always accumulated Enable enabled threshold energy is not accumulated if P 0 005 I003 Energy Counter Reset I003 Range 0 1 0 No 1 Yes Default This is not a parameter I003 is set to zero at power on and whenever the command is executed Level ENGINEERING Address 1390 Function 0 Inactive 1 Both energy counters are reset measures...

Page 97: ...urrent Offset ENGINEERING 998 0 00 mA P546 DC Current Input Filter ENGINEERING 999 100 ms P545 DC Current Offset P545 Range 2000 2000 20 00 mA 20 00 mA Default 0 0 00 mA Level ENGINEERING Address 998 Function This parameter selects the offset correction value of the DC current signal that has been measured The set value is added to the signal measured before saturation or conversion P546 DC Curren...

Page 98: ... 0 150 s P553 Max Voltage Reset Time ENGINEERING 673 0 100 s P554 Min Voltage Trip Threshold ENGINEERING 674 80 Vn P555 Min Voltage Release Ratio ENGINEERING 675 1 125 P556 Min Voltage Trip Time ENGINEERING 676 0 150 s P557 Min Voltage Reset Time ENGINEERING 677 0 100 s P558 Instantaneous Undervoltage Trip Threshold ENGINEERING 678 60 Vn P559 Instantaneous Undervoltage Release Ratio ENGINEERING 67...

Page 99: ...ltage fault and its reset value P552 Max Voltage Trip Time P552 Range 20 1000 0 020 1 000 s Default 150 0 150 s Level ENGINEERING Address 672 Function This is the time when the max voltage trip condition is maintained for the mains Max Voltage fault P553 Max Voltage Reset Time P553 Range 20 1000 0 020 1 000 s Default 100 0 100 s Level ENGINEERING Address 673 Function This is the time when the max ...

Page 100: ...P557 Range 20 1000 0 020 1 000 s Default 100 0 100 s Level ENGINEERING Address 677 Function This is the time when the min voltage reset condition is maintained to deactivate the mains Min Voltage fault P558 Instantaneous Undervoltage Trip Threshold P558 Range 50 90 50 90 of Vn Default 60 60 of Vn Level ENGINEERING Address 678 Function This parameter is expressed as a percentage of the rated mains ...

Page 101: ...te the mains Instantaneous Undervoltage fault P562 Max Frequency Trip Threshold P562 Range 10 200 0 10 2 00 Hz Default 30 0 30 Hz Level ENGINEERING Address 682 Function This parameter sets the max frequency value if compared to the rated frequency which determines the mains Max Frequency fault P563 Max Frequency Release Ratio P563 Range 995 1000 0 995 1 000 Default 998 0 998 Level ENGINEERING Addr...

Page 102: ...s the mains Min Frequency fault P567 Min Frequency Release Ratio P567 Range 1000 1006 1 000 1 006 Default 1002 1 002 Level ENGINEERING Address 687 Function This parameter sets the ratio between the trip frequency for the Min Frequency fault and its reset value P568 Min Frequency Trip Time P568 Range 40 1000 0 040 1 000 s Default 80 0 080 s Level ENGINEERING Address 688 Function This is the time wh...

Page 103: ...it controlled parameter bits 0 to 2 allow enabling Bit 1 or disabling Bit 0 the RMS min voltage alarm of the three mains phases R S T P572 Max Voltage Alarm Enable P572 Range 0 0007h 0 0007 Default 0007h Bit 0 1 Enable R phase alarm Bit 1 1 Enable S phase alarm Bit 2 1 Enable T phase alarm Level ENGINEERING Address 692 Function Bit controlled parameter bits 0 to 2 allow enabling Bit 1 or disabling...

Page 104: ...y Alarm Enable P574 Range 0 0003h 0 0003 Default 0003h Bit 0 1 Enable Max Frequency alarm Bit 1 1 Enable Max Frequency alarm Level ENGINEERING Address 694 Function Bit controlled parameter bits 0 to 1 allow enabling Bit 1 or disabling Bit 0 the mains Max and Min frequency alarms ...

Page 105: ...cient Kri required for scaling the maximum and minimum values in case of programming via serial link Example Max value to be represented P179 100 A the value to be programmed via serial link is P179 100 A Kri 1000 The parameters relating to the following items are detailed in the Analog Outputs section in the Sinus Penta s Programming Instructions manual Operating modes of the analog outputs volta...

Page 106: ...P581 Parameter FUNCTION User Level MODBUS Address DEFAULT VALUES P580 MDO1 Digital Output Function BASIC 700 1 Run OK P581 MDO2 Digital Output Function BASIC 701 2 Mains Fault Table 12 List of parameters P580 and P581 P580 P581 MDO1 MDO2 Digital Output Function P580 P581 Range 0 10 0 Synchronization OK 1 Run OK 2 Mains Fault 3 Drive OK 4 Drive in Alarm 5 W40 Fan Fault 6 Precharge OK 7 Command 1 fr...

Page 107: ...frequency out of range if compared to the values set in the Mains Monitor menu 3 DRIVE OK No alarm tripped 4 DRIVE in ALARM Active alarm s 5 W40 Fan Fault The control board has detected a fan fault signal 6 Precharge OK Successful closure of the DC Bus Capacitor Precharge relay and MDO3 output for the external bypass 7 10 Command from Fieldbus The digital output is controlled directly from the fie...

Page 108: ...O3 Output Logic Level ENGINEERING 707 1 True P588 XMDO4 Signal Selection ENGINEERING 708 D0 Disable P589 XMDO4 Output Logic Level ENGINEERING 709 1 True P590 XMDO5 Signal Selection ENGINEERING 710 D0 Disable P591 XMDO5 Output Logic Level ENGINEERING 711 1 True P592 XMDO6 Signal Selection ENGINEERING 712 D0 Disable P593 XMDO6 Output Logic Level ENGINEERING 713 1 True Table 14 List of parameters P58...

Page 109: ...xiliary Digital Outputs XMDO1 6 Range 0 1 0 FALSE 1 TRUE Default 1 1 TRUE Level ENGINEERING Address 703 705 707 709 711 713 Function XMDOx digital output logic function to apply a logic reversal negation to the calculated output signal 0 FALSE a logic negation is applied 1 TRUE no negation is applied ...

Page 110: ...set ENGINEERING 921 0 00 C P322 Ch2 Measure Mode ENGINEERING 922 0 no input P322a Ch2 Alarm Level ENGINEERING 919 260 C P323 Ch2 Offset ENGINEERING 923 0 00 C P324 Ch3 Measure Mode ENGINEERING 924 0 no input P324a Ch3 Alarm Level ENGINEERING 928 260 C P325 Ch3 Offset ENGINEERING 925 0 00 C P326 Ch4 Measure Mode ENGINEERING 926 0 no input P326a Ch4 Alarm Level ENGINEERING 929 260 C P327 Ch4 Offset ...

Page 111: ...Level ENGINEERING Address 921 923 925 927 Function Value of the measure offset an offset can be applied to the measure to correct possible errors P320a P322a P324a P326a Alarm Level for Channels 1 2 3 4 P320a P322a P324a P326a Range 50 260 50 C 260 C Default 260 260 C Level ENGINEERING Address 918 919 928 929 Function Alarm threshold for A105 A108 Alarms trip when measures levels ...

Page 112: ...or any detail about the communications protocol the hardware interface the implemented functions etc please refer to the Fieldbus sections in the Sinus Penta s Installation Instructions and Programming Instructions manuals NOTE The section below covers the fieldbus operation for the Regenerative application ...

Page 113: ... from the fieldbus among the measures M500 to M090 see Table 16 below 0 M500 DC bus V Ref 31 M031 Delay Dig IN 1 M501 DC bus V 32 M032 Inst Dig IN 2 M502 Mains V 33 M033 Term Dig IN 3 M503 Current 34 M034 Ser Dig IN 4 M504 Frequency 35 M035 Fbus Dig IN 5 M505 Active Power 56 M056 Digital OUT 6 M506 React Power 58 M058 AO1 7 M507 Apparent Power 59 M059 AO2 8 M508 Cosphi 60 M060 AO3 9 M509 V RS 61 M...

Page 114: ... via Fieldbus and the hardware represented value as displayed NOTE Each parameter is exchanged as a 16 bit integer with a sign from 32768 to 32767 The byte exchanging sequence follows the big endian rule i e the most significant value is stored to the lowest address 3 11 4 FROM THE MASTER TO THE SINUS PENTA 1 Position 2 ID 3 Description 4 Range 5 Unit of Measure 6 Ratio 1 4 5 M035 Digital inputs f...

Page 115: ...atus of these bits is part of the overall status of the drive digital inputs measure M032 along with the other control sources if at least one among C140 C142 is set as Fieldbus NOTE Digital inputs MDI4 external pre charge closed signals and MDI5 filter capacitor protection are detected in the hardware drive terminal board only as they are affected by the hardware status of the cabinet where the d...

Page 116: ...3 Example In order to control MDO1 digital output via fieldbus through command 4 set P580 in the DIGITAL OUTPUTS MENU as follows P580 10 Fbus CMD 4 Note C In order to control the analog outputs from the Fieldbus properly set up parameter R017 please refer to the Sinus Penta s Programming Instructions manual NOTE Once changed and saved R017 has no effect until the drive is next powered on or until ...

Page 117: ...Input 16380 16380 Note G 10 AIN2 AIN2 Analog Input 16380 16380 Note G The exchanged parameters can be customized by properly setting P330 and P331 see the FIELDBUS MENU As per the unit of measure and the scaling range please refer to the Range line in the table relating to the selected measure Measures section Example M505 Delivered Active Power M505 Range 32000 3200 0 kW Address 1655 Function Act...

Page 118: ...External Alarm 2 46 A046 Bypass Connector Fault 85 A085 External Alarm 3 47 A047 UnderVoltage 88 A088 ADC Not Tuned 48 A048 OverVoltage 89 A089 Parm Lost 2 COM 49 A049 RAM Fault 90 A090 Parm Lost 3 COM 50 A050 PWMA0 Fault 91 A091 Braking Resistor Overload 51 A051 HW OverCurrent 92 A092 SW Version KO 53 A053 PWMA Not ON 93 A093 Bypass Circuit Open 54 A054 SPI Alarm 94 A094 Heatsink OverTemperature ...

Page 119: ...he drive digital inputs in the word is as follows bit 15 8 bit 7 0 Digital inputs in option boards Drive digital inputs Bitmap 0 MDI1 1 MDI2 ENABLE 2 MDI3 RESET 3 MDI4 Prech 4 MDI5 C Prot 5 MDI6 6 MDI7 7 MDI8 8 XMDI1 9 XMDI2 10 XMDI3 11 XMDI4 12 XMDI5 13 XMDI6 14 XMDI7 15 XMDI8 ...

Page 120: ...y changed by the drive due to the tolerance compensation of the input stages ALARM A070 COMMUNICATIONS FAILURE Alarm A070 trips if the Sinus Penta has not received any legal message sent via FIELDBUS for the timeout set in parameter R016 please refer to the Sinus Penta s Programming Instructions manual To disable alarm A070 set R016 0 A legal message is sent when the master writes the digital inpu...

Page 121: ... sinusoidal absorption and braking energy delivery to the mains will stop CLOSED motor drive enabled The regenerative drive is enabled the pre charge of the internal capacitors is complete possible fault but the drive is waiting for the autoreset signal 2 RESET OR RUNNING OPEN motor drive disabled The regenerative drive is disabled or the pre charge contactor is not closed or an alarm tripped that...

Page 122: ...lass 6000 6900 2T Class 200 0 240 0 V 4T Class 380 0 480 0 V 5T Class 500 0 600 0 V 6T Class 600 0 690 0 V Default 2T Class 2300 4T Class 4000 5T Class 5750 6T Class 6900 2T Class 230 0 V 4T Class 400 0 V 5T Class 575 0 V 6T Class 690 0 V Level BASIC Address 1000 Function This parameter sets the rated mains voltage used to calculate the trip thresholds of the mains alarms that can be set through t...

Page 123: ...he mains is out of range if compared to the thresholds set in the Mains Monitor menu the drive is disabled for some time but is not locked in an emergency otherwise if C502 1 Yes the drive locks C503 MDO4 Digital Output Function C503 Range 1 2 0 REGEN ENABLED 1 REGEN RUN or RESET 2 REGEN RUN Default 2 2 REGEN RUN Level ADVANCED Address 1389 Function This parameter sets which function is implemente...

Page 124: ...he logic status of the ENABLE command and the digital inputs programmed as external trips if any depend on the control terminals resulting from the AND of all the active control sources NOTE For the activation of the ENABLE command always close the MDI2 input in the terminal board whatever control source is selected NOTE Whatever control source is selected the status of MDI4 Pre charge Return and ...

Page 125: ...he pre charge contactor MDI4 Indicates the pre charge contactor closure if no closure signal is sent the drive run is disabled Alarm A058 Status of the NC auxiliary contact of the thermal magnetic circuit breaker for the filter capacitors MDI5 If open it indicates that the thermal magnetic CB tripped alarm A059 Not enabled MDI6 Not enabled MDI7 Not enabled MDI8 Table 19 Factory setting of the term...

Page 126: ... MDI2 ENABLE is disabled NOTE When the ENABLE is active C configuration parameters cannot be altered 3 14 4 RESET TERMINAL MDI3 The RESET function is assigned to input terminal MDI3 It resets the alarms to unlock the drive and cannot be programmed for any other terminal Reset procedure Activate the RESET input for some time or press the RESET key in the keypad the drive unlocks only if the cause r...

Page 127: ...e 3 functions is programmed for one of the available terminals the drive locks when the command contact ingoing to the terminal selected by par C164 C165 or C166 opens Parameters C164a C165a C166a allow setting the trip delay for any external alarm To restart the drive close the digital input configured as external alarm and perform a RESET procedure Alarms tripped due to those functions are A083 ...

Page 128: ...66a External Alarm Trip Delay C164a C165a C166a Range 0 32000 0 32000 msec Default 0 Instantaneous Level BASIC Address 1305 1306 1307 Function Trip delay of the external alarm This is a delay time allowing checking if the input set as external alarm is open before the alarm trips ...

Page 129: ...0 C211 C212 C211 sec 3 15 2 LIST OF PROGRAMMABLE PARAMETERS C211 AND C212 Parameter FUNCTION User Level MODBUS Address DEFAULT VALUES C211 Max Continuous Operation Time ENGINEERING 1211 2000 sec C212 Braking Duty cycle ENGINEERING 1212 10 Table 23 List of parameters C211 and C212 C211 Max Continuous Operation Time C211 Range 0 32000 0 32000 msec Default 2000 2000 sec Level ENGINEERING Address 1211...

Page 130: ... be obtained when the drive is next turned on C257 Yes 3 16 2 LIST OF PROGRAMMABLE PARAMETERS C255 TO C261 Parameter FUNCTION User Level MODBUS Address DEFAULT VALUES C255 Autoreset Attempt Number ENGINEERING 1255 0 C256 Attempt Counting Reset Time ENGINEERING 1256 300 sec C257 Alarm reset at Power On ENGINEERING 1257 0 Disabled C258 Enable TLP Fault Autoreset ENGINEERING 1258 0 Disabled C259 Enab...

Page 131: ... C259 Enable CFilt Fault Autoreset C259 Range 0 1 0 Disabled 1 Yes Default 0 0 Disabled Level ENGINEERING Address 1259 Function This parameter enables the Autoreset function for the Cfilt fault the autoreset attempt number is set in C255 C260 Enable Mains Fault Autoreset C260 Range 0 1 0 Disabled 1 Yes Default 0 0 Disabled Level ENGINEERING Address 1260 Function This parameter enables the Autorese...

Page 132: ...efault 1 1 Disable Level ENGINEERING Address 551 Function This parameter enables or disables Data Logger initialization if the Data Logger board is fitted R023 I O Board Setting R023 Range 0 6 0 None 1 XMDO 2 XMDO Pout 3 XMDO PT100 4 XMDO Pout PT100 5 XMDO ADE 6 XMDO ADE Pout Default 0 0 None Level ENGINEERING Address 553 Function Based on the settings in the respective parameters this parameter e...

Page 133: ...O A100 ALR Fmains KO Min mains frequency fault Yes Yes if enabled NO with active Autoreset NO A101 ALR V MIN KO Min mains voltage fault Yes Yes if enabled NO with active Autoreset NO A102 ALR V MAX KO Max mains voltage fault Yes Yes if enabled NO with active Autoreset NO A103 PLL KO No synchronization with the mains Yes Yes if enabled NO with active Autoreset NO Table 26 List of the alarms for the...

Page 134: ...t capable of regulating DC bus voltage due to a great load demand Alarm A047 may trip even when the mains voltage drops below the preset threshold for some time for example due to direct load connection Mains voltage failure even of one phase only Failure in DC bus voltage measure circuit Solutions 1 Check if voltage is supplied to the 3 mains phases terminals R S T Check mains voltage measured in...

Page 135: ...Failure in DC bus voltage measure circuit Solutions 1 Check if voltage is supplied to the 3 mains phases terminals R S T Check mains voltage measured in M503 and check DC bus voltage measured in M502 Also check the values of these measures which are sampled in the FAULT LIST as soon as the alarm trips 2 If a very inertial load is connected and the alarm tripped when decelerating set a longer decel...

Page 136: ...t breaker protecting the capacitors of the input filter has tripped Event The control board has not detected any filter capacitor protection OK signal auxiliary contact of the thermal magnetic circuit breaker protecting the drive output filter capacitors Possible causes Wrong wiring capacitor overcurrent control board failure Solutions 1 Check capacitors and wiring 2 Restore the T M circuit breake...

Page 137: ... 2 This protection can be disabled or delayed see the MAINS MONITOR MENU A105 A106 A107 A108 PT100 Channel 1 2 3 4 Fault A105 Channel 1 A106 Channel 2 A107 Channel 3 A108 Channel 4 Description A105 PT100 Channel 1 fault A106 PT100 Channel 2 fault A107 PT100 Channel 3 fault A108 PT100 Channel 4 fault Event Temperature measures M069 M072 exceeding the thresholds set in P320a P322a P324a P326a see th...

Page 138: ...the regenerative application For different applications please refer to the relevant manuals and to the updates available on Elettronica Santerno s website www elettronicasanterno it NOTE Please refer to the User Manual of the Remote Drive software for more details The software of the Sinus Penta drives consists of two files one containing the firmware and one containing the MMI table for the keyp...

Page 139: ...arameters window select the Local mode In the Serial Configuration Parameters window set the interface device the COM being used and the baud rate 38400bps click Connect then click the Next button In the example below USB RS485 converter is used 4 Select Firmware Upgrade from the File drop down menu Enter the path for the PXxxxxF0 mot and PXxxxxF1 files to be downloaded If only one of the firmware...

Page 140: ...Flash clearing will appear Click Yes to start downloading Once download is over go to step 6 6 Click Browse to select the PxxxxF1 mot file Click SendTab Once this file is downloaded the application download is complete end of the download procedure 7 Click Browse to select the file to be updated PXxxxxF0 mot for the firmware and PxxxxF1 mot for the MMI table first click Open then click Send or Sen...

Reviews: