background image

10

© 2016 Emerson Climate Technologies, Inc.

AE4-1402 R4

after the compressor is turned off. 

Accumulators

The use of accumulators is very dependent on the 

application. The variable speed scroll has an inherent 

ability to handle liquid refrigerant during occasional 

operating  flood  back  situations.  Systems  designed 

with EXV or TXV refrigerant control may not require 

an accumulator if testing assures the system designer 

that  there  will  be  no  flood  back  throughout  the 

operating range. To test for flood back conditions and 

to determine if the accumulator or EXV/TXV design is 

adequate, please see the 

Application Tests

 section. 

A  large-area  protective  screen  no  finer  than  30x30 

mesh  is  required  to  protect  this  small  orifice  from 

plugging. Tests have shown that a small screen with 

a fine mesh can easily become plugged causing oil 

starvation to the compressor bearings. The size of 

the accumulator depends upon the operating range 

of the system and the amount of system refrigerant 

charge. System modeling indicates that heat pumps 

that operate down to and below 0°F (-18°C) will require 

an accumulator that can hold around 70% to 75% of 

the system charge. Behavior of the accumulator and 

its ability to prevent liquid slugging and subsequent oil 

pump-out at the beginning and end of the defrost cycle 

should be assessed during system development. This 

will require special accumulators and compressors 

with sight tubes and/or sight glasses for monitoring 

refrigerant and oil levels.

Off-Cycle Migration Control

Off-cycle migration control is important for long term 

compressor reliability and to minimize nuisance 

complaints  associated  with flooded  start conditions. 

Off-cycle migration control is recommended when 

the system charge exceeds 15.0 lbs (7 kg). Off-

cycle migration control is required when the system 

charge exceeds 18 lbs (8 kg). In lieu of using a 

conventional wrap-around crankcase heater, the drive 

has a programmable feature that will utilize the motor 

windings.

If off-cycle migration control is required, and no off-

cycle migration testing across the range of expected 

indoor/outdoor temperatures is performed, the stator 

heater must be powered to at least 100 Watts when 

the compressor is 'off'. To use fewer than 100 Watts or 

to comply with future DOE requirements for off-cycle 

power consumption, off-cycle migration testing must 

be performed. A 70 watt crankcase heater may be 

used instead of the motor windings to provide heat 

to the base.

CAUTION Stator heat for off-cycle migration must 

not be energized when the system is in a vacuum 

or if there is no refrigerant charge in the system. 

The system low pressure cut-out control can be 

used as an indicator of the presence of refrigerant 

charge.

Manifolded Compressors

Multiple compressor assemblies are available for 

purchase from Emerson. In lieu of purchasing the 

assembled manifold, the OEM can choose to purchase 

the manifold-ready compressor and perform the 

assembly in their factory. Drawings of tandem and trio 

compressor assemblies are available from Emerson 

Climate Technologies by contacting your Application 

Engineer. 

NOTICE: Customers who choose to 

design and build their own manifolds for tandem 

and trio compressor assemblies are ultimately 

responsible for the reliability of those manifold 

sets.

The suction manifold is close to a symmetrical layout 

with the design intent of equal pressure drop to each 

compressor. A straight length of pipe is connected to 

the suction manifold "T" connection to serve as a flow 

straightener to make the flow as uniform as possible. 

The discharge manifold is the less critical of the two 

manifolds in terms of pressure drop. Low pipe stress 

and reliability are its critical design characteristics. 

Support for the discharge manifold between the 

compressors should be no closer than a straight 

distance of 14" (356 mm) from the discharge tee.

For tandem compressor applications, tubing stress 

levels should be closely evaluated between a 

frequency of 29 and 35 Hz. If excess stress levels 

occur, the Resonance Avoidance Feature in the 

Emerson EVC1 drive may be used.

Manifolded Applications

Manifolded compressors follow the same application 

guidelines as single compressors outlined in this 

bulletin. The refrigerant charge limit for manifolded 

compressors is shown in 

Table 4

. A manifolded circuit 

with charge over the limit must have a crankcase 

heater or stator heating applied to both compressors.

Oil levels in the individual sight-glasses will vary, 

depending on whether one or more compressors in the 

Summary of Contents for Copeland Scroll ZPV063

Page 1: ...or Overload Protection 7 Oil Type 7 Maximum Tilt Angle 7 Contaminant Control 7 Refrigerant Piping 8 Discharge Check Valve 8 Suction and Discharge Tube Design 8 Compressor Mounting 9 Discharge Mufflers 9 Airborne Sound Control 9 Expansion Devices 9 Reversing Valves 9 Accumulators 10 Off Cycle Migration Control 10 Manifolded Compressors 10 Manifolded Applications 10 Application Tests General Applica...

Page 2: ...e compessor You are strongly advised to follow these safety instructions Safety Icon Explanation DANGER indicates a hazardous situation which if not avoided will result in death or serious injury WARNING indicates a hazardous situation which if not avoided could result in death or serious injury CAUTION used with the safety alert symbol indicates a hazardous situation which if not avoided could re...

Page 3: ...ectrically locking out the system Use only approved refrigerants and refrigeration oils Personal safety equipment must be used Failure to follow these warnings could result in serious personal injury BURN HAZARD Do not touch the compressor until it has cooled down Ensure that materials and wiring do not touch high temperature areas of the compressor Use caution when brazing system components Perso...

Page 4: ...ying conductors RLA MCC 1 4 Max Operating Current The maximum input current to the drive at nominal voltage when the compressor is running inside any one of the operating envelopes at the speed range designated for that envelope Please refer to Table 1 for more technical data for the compressor Power Supply The compressor and drive are an integral and optimized combination The drive will convert t...

Page 5: ...1 drive includes an oil boost cycle when the compressor operates between 1000 and 1800 RPM The oil boost cycle starts once the compressor operates for two hours between 1000 and 1800 RPM During the oil boost cycle the drive forces the compressor to run for five minutes at 3600 RPM After operating for five minutes at 3600 RPM the drive allows the compressor to operate between 1000 and 1800 RPM Figu...

Page 6: ...t in oil pump out if the system has long interconnecting piping Customers that choose to operate in these higher evaporating temperature areas should use a compressor sample with a sight tube during system development testing to ensure that an adequate level of oil is maintained in the compressor sump Sight tubed compressors for monitoring the oil level are available by contacting Application Engi...

Page 7: ...r protective equipment gloves eye protection etc must be used when handling POE lubricant POE must not come into contact with any surface or material that might be harmed by POE and spills should be cleaned up quickly with paper towels soap and water Maximum Tilt Angle Applications such as transportation air conditioning or mobile radar applications may require the compressor to operate at some an...

Page 8: ...of the sight glass The compressor oil level should be checked with the compressor off to avoid the sump turbulence when the compressor is running These compressors are available to the OEM with a production sight glass that can be used to determine the oil level in the compressor in the end use application These compressors are also available to the OEM with an oil Schrader fitting on the side of ...

Page 9: ... not have the ability to control the refrigerant flow across a wide range of operating pressures and flow rates required by the variable capacity system To better control superheat an electronic expansion valve EXV is recommended Electronic expansion valves have the ability to more precisely control superheat at lower settings over a wider operating range than a TXV They also have the capability t...

Page 10: ...d to at least 100 Watts when the compressor is off To use fewer than 100 Watts or to comply with future DOE requirements for off cycle power consumption off cycle migration testing must be performed A 70 watt crankcase heater may be used instead of the motor windings to provide heat to the base CAUTION Stator heat for off cycle migration must not be energized when the system is in a vacuum or if t...

Page 11: ...w system designs should be evaluated throughout the entire expected operating range of the unit to ensure the system will perform reliably throughout the life of the product Test data taken throughout the operating range of the unit should be closely scrutinized to help identify gross errors in system design that may produce conditions that could lead to compressor failure General Application Test...

Page 12: ...rmally low suction pressures during charging NOTICE Do not operate the compressor without enough system charge to maintain at least 55 psig 3 8 bar suction pressure Do not operate the compressor with the low pressure cut out disabled Do no operate with a restricted suction or liquid line Depending on the discharge pressure allowing pressure to drop below 55 psig 3 8 bar for more than a few seconds...

Page 13: ...damage to the drive Measuring the current in the three individual wires feeding the compressor will provide no useful information to the service technician other than to show that each winding of the compressor is drawing current The more appropriate measurement is the current input to the drive Current input to the drive can be compared to the published values of MCC and RLA Compressor Replacemen...

Page 14: ...ndem Cubic Centimeters Per Revolution 3 numeric characters Optional E POE Oil P POE R410A 1st Generation VS Only K1 Nominal Capacity Capacity at Rating Condition Multiplier 2 3 numeric characters K 1 000 M 10 000 C SCFM VARIABLE SPEED COMPRESSOR NOMENCLATURE Application Range Code Application Refgn Substance Compressed P AC HP R 410A B H Heat Pump Optimized R410A Figure 1 Compressor Nomenclature E...

Page 15: ...75 80 85 90 Tcond F Tevap F ZPV063 Operating Envelope 20 F 11 C SH 15 F 8 C SC 95 F 35 C Ambient Solid Line Boundaries OEM tes ng is required to monitor the DLT in the dashed line boundaries 2600 6000 RPM 2200 6000 RPM 1800 7200 RPM Tcond C Tevap C DLT 275 F 1000 7200 RPM An Oil Boost Cycle Is Required For Speeds 1000RPM 1800RPM Cycle Parameters 1000RPM 1800RPM For 2 Hours Ramp To 3600RPM For 5 Mi...

Page 16: ...ise superheat A cold sump may result in high refrigerant migration after shut down Figure 4 Oil Dilution Chart 30 25 20 15 10 5 0 5 10 24 14 4 6 16 26 36 10 0 10 20 30 40 50 60 70 80 90 100 110 20 10 0 10 20 30 40 50 Evaporating Temperature C Compressor Sump Temperature C Compressor Sump Temperature F Evaporating Temperature F 200 F 93 3 C Max Oil Temp Acceptable Unacceptable Too Much Refrigerant ...

Page 17: ... Add braze material to the joint while moving torch around joint to flow braze material around circumference After braze material flows around joint move torch to heat Area 3 This will draw the braze material down into the joint The time spent heating Area 3 should be minimal As with any brazed joint overheating may be detrimental to the final result Field Service WARNING Remove refrigerant charge...

Page 18: ...18 2016 Emerson Climate Technologies Inc AE4 1402 R4 Figure 6 ...

Page 19: ...arge Thermistors Fluid Brake Sight Glass Floating Seal 7 8 22 3mm Discharge Fitting 1 1 8 28 7mm Fixed Scroll BPM Motor Orbiting Scroll Counterweight Cup for Oil Circulation Positive Displacement Oil Pump Suction Fitting Management Figure 8 ZPV063 Cross Sectional View ...

Page 20: ...E 1 E 9 X X X First Character Second Character Third Character Follows VS Motor Type VS Fixed Tandem Follows Fixed Electrical Code E E E E F Z E W Y X E B X F C X W G Examples 2E9 TFD 2ZD 3X9 TF7 3C7 4E9 TE5 4E5 5X9 TEE 5BE Figure 9 Electrical Nomenclature For Multiples ...

Page 21: ...scharge Line Thermistor 085 0261 00 ZPV063 Fits 7 8 Tube Discharge Line Thermistor Molex Connector 085 0211 00 ZPV063 Fits 7 8 Tube Thermistor Clip 032 0688 04 ZPV063 7 8 Clip Suction Discharge Discharge Rotalock O Ring Seal 020 0028 02 ZPV063 Suction Rotalock O Ring Seal 020 0028 03 Discharge Rotalock Service Valve 7 8 998 0510 90 Suction Rotalock Service Valve 1 1 8 998 0510 99 Discharge Rotaloc...

Page 22: ... 1 Motor Poles 6 Motor Input Frequency Hertz 50 360 Recommended Switching Frequency Hertz 6 000 Table 2 Compressor Motor Specifications Drive Model EVC1150B K1 114 EVC1150B L1 114 EVC1150B J1 114 Compressor Model ZPV0631E 4E9 ZPV0631E 4E9 ZPV0631E 5E9 Drive Voltage Input 380 480 500 575 200 240 Drive Nominal Power 15 KW 15 KW 15 KW Drive Max Continuous Output Current 31 Amps 27 Amps 58 Amps NOTE C...

Page 23: ...s kg ZPV063 15 7 18 8 18 8 Charge allowance for system Speed Range RPM Default RPM Acceleration RPM Sec Deceleration RPM Sec Notes Range Default Range Default Start 3600 7200 3600 400 1000 1 0 NA NA 1 Run 1000 7200 200 RPM S Stop 1000 7200 3600 or Envelope Minimum NA NA 50 500 2 0 2 3 4 Notes 1 Once the compressor reaches 3600 RPM hold for two minutes prior to accelerating or decelerating 2 If env...

Reviews: