background image

13

© 2016 Emerson Climate Technologies, Inc.

AE4-1402 R4

with high compression ratios and/or long test times. 

Copeland Scroll compressors are designed for use 

with refrigerant, and testing with nitrogen may result in 

a situation where the compressor does not develop a 

pressure differential (no pump condition). When testing 

with nitrogen, the compressor must be allowed to cool 

for several minutes between tests.

Unbrazing System Components

WARNING

Before attempting to braze, it is important to 

recover all refrigerant from both the high and low 

side of the system.

If the refrigerant charge is removed from a scroll-

equipped unit by recovering one side only, it is very 

possible that either the high or low side of the system 

remains pressurized. If a brazing torch is then used 

to disconnect tubing, the pressurized refrigerant and 

oil mixture could ignite when it escapes and contacts 

the  brazing  flame.  Instructions  should  be  provided 

in appropriate product literature and assembly (line 

repair) areas. If compressor removal is required, the 

compressor should be cut out of the system rather than 

unbrazed. See 

Figure 5

 for proper compressor removal 

procedure.

SERVICE PROCEDURES

The drive offers a two wire 485 interface. This enables 

the drive set-up, operation and monitoring to be carrier 

out with a PC or controller if required. The drive only 

supports Modbus RTU protocol. Refer to the Emerson 

EVC1 drive user guide for more information.

Electrical Troubleshooting
CAUTION The compressor must always have the 

green ground wire attached to the ground. The 

other end of the green wire must be connected to 

the appropriate ground terminal on the drive.

The BPM motors used in the variable speed scrolls 

are three-phase. The winding resistance for each 

compressor-motor is published in the 

Online Product 

Information

. The three windings should always have 

line to line continuity because there is no internal 

overload at the center of the motor windings to open and 

take the motor off-line. If one or more of the windings 

shows continuity to ground, the compressor must be 

replaced. 

CAUTION  Energizing a variable speed scroll with a 

grounded winding can cause irreversible damage 

to the drive.

Measuring the current in the three individual wires 

feeding the compressor will provide no useful 

information to the service technician, other than to show 

that each winding of the compressor is drawing current. 

The more appropriate measurement is the current input 

to the drive. Current input to the drive can be compared 

to the published values of MCC and RLA.

Compressor Replacement After a Motor Burn

In the case of a motor burn, the majority of contaminated 

oil will be removed with the compressor. The rest of the 

oil is cleaned with the use of suction and liquid line filter 

driers. A 100% activated alumina suction filter drier is 

recommended but must be removed after 72 hours. See 

AE24-1105

 for clean up procedures and 

AE11-1297

 for 

liquid line filter-drier recommendations. 

NOTICE

 

It is 

highly recommended that the suction accumulator 

be replaced if the system contains one.

 This is 

because the accumulator oil return orifice or screen may 

be plugged with debris or may become plugged shortly 

after a compressor failure. This will result in starvation of 

oil to the replacement compressor and a second failure. 

Start-Up of a New or Replacement Compressor

It is good service practice, when charging a system with 

a scroll compressor, to charge liquid refrigerant into 

the high side only. It is not good practice to dump liquid 

refrigerant from a refrigerant cylinder into the crankcase 

of a stationary compressor. If additional charge is 

required, charge liquid into the low side of the system 

with the compressor operating. 

CAUTION

 

Do not 

start the compressor while the system is in a deep 

vacuum. 

Internal arcing may occur when any type of 

compressor is started in a vacuum. 

NOTICE Do not 

operate the compressor without enough system 

charge to maintain at least 55 psig (3.8 bar) suction 

pressure. Do not operate with a restricted suction 

or liquid line. Do not operate with the low pressure 

cut-out disabled.

 Allowing suction pressure to drop 

below 55 psig (3.8 bar) for more than a few seconds 

may overheat the scrolls and cause early drive bearing 

damage. Never install a system in the field and leave 

it unattended with no charge, a holding charge, or with 

the service valves closed without securely locking out 

the system. This will prevent unauthorized personnel 

from accidentally ruining the compressor by operating 

with no refrigerant flow.

Summary of Contents for Copeland Scroll ZPV063

Page 1: ...or Overload Protection 7 Oil Type 7 Maximum Tilt Angle 7 Contaminant Control 7 Refrigerant Piping 8 Discharge Check Valve 8 Suction and Discharge Tube Design 8 Compressor Mounting 9 Discharge Mufflers 9 Airborne Sound Control 9 Expansion Devices 9 Reversing Valves 9 Accumulators 10 Off Cycle Migration Control 10 Manifolded Compressors 10 Manifolded Applications 10 Application Tests General Applica...

Page 2: ...e compessor You are strongly advised to follow these safety instructions Safety Icon Explanation DANGER indicates a hazardous situation which if not avoided will result in death or serious injury WARNING indicates a hazardous situation which if not avoided could result in death or serious injury CAUTION used with the safety alert symbol indicates a hazardous situation which if not avoided could re...

Page 3: ...ectrically locking out the system Use only approved refrigerants and refrigeration oils Personal safety equipment must be used Failure to follow these warnings could result in serious personal injury BURN HAZARD Do not touch the compressor until it has cooled down Ensure that materials and wiring do not touch high temperature areas of the compressor Use caution when brazing system components Perso...

Page 4: ...ying conductors RLA MCC 1 4 Max Operating Current The maximum input current to the drive at nominal voltage when the compressor is running inside any one of the operating envelopes at the speed range designated for that envelope Please refer to Table 1 for more technical data for the compressor Power Supply The compressor and drive are an integral and optimized combination The drive will convert t...

Page 5: ...1 drive includes an oil boost cycle when the compressor operates between 1000 and 1800 RPM The oil boost cycle starts once the compressor operates for two hours between 1000 and 1800 RPM During the oil boost cycle the drive forces the compressor to run for five minutes at 3600 RPM After operating for five minutes at 3600 RPM the drive allows the compressor to operate between 1000 and 1800 RPM Figu...

Page 6: ...t in oil pump out if the system has long interconnecting piping Customers that choose to operate in these higher evaporating temperature areas should use a compressor sample with a sight tube during system development testing to ensure that an adequate level of oil is maintained in the compressor sump Sight tubed compressors for monitoring the oil level are available by contacting Application Engi...

Page 7: ...r protective equipment gloves eye protection etc must be used when handling POE lubricant POE must not come into contact with any surface or material that might be harmed by POE and spills should be cleaned up quickly with paper towels soap and water Maximum Tilt Angle Applications such as transportation air conditioning or mobile radar applications may require the compressor to operate at some an...

Page 8: ...of the sight glass The compressor oil level should be checked with the compressor off to avoid the sump turbulence when the compressor is running These compressors are available to the OEM with a production sight glass that can be used to determine the oil level in the compressor in the end use application These compressors are also available to the OEM with an oil Schrader fitting on the side of ...

Page 9: ... not have the ability to control the refrigerant flow across a wide range of operating pressures and flow rates required by the variable capacity system To better control superheat an electronic expansion valve EXV is recommended Electronic expansion valves have the ability to more precisely control superheat at lower settings over a wider operating range than a TXV They also have the capability t...

Page 10: ...d to at least 100 Watts when the compressor is off To use fewer than 100 Watts or to comply with future DOE requirements for off cycle power consumption off cycle migration testing must be performed A 70 watt crankcase heater may be used instead of the motor windings to provide heat to the base CAUTION Stator heat for off cycle migration must not be energized when the system is in a vacuum or if t...

Page 11: ...w system designs should be evaluated throughout the entire expected operating range of the unit to ensure the system will perform reliably throughout the life of the product Test data taken throughout the operating range of the unit should be closely scrutinized to help identify gross errors in system design that may produce conditions that could lead to compressor failure General Application Test...

Page 12: ...rmally low suction pressures during charging NOTICE Do not operate the compressor without enough system charge to maintain at least 55 psig 3 8 bar suction pressure Do not operate the compressor with the low pressure cut out disabled Do no operate with a restricted suction or liquid line Depending on the discharge pressure allowing pressure to drop below 55 psig 3 8 bar for more than a few seconds...

Page 13: ...damage to the drive Measuring the current in the three individual wires feeding the compressor will provide no useful information to the service technician other than to show that each winding of the compressor is drawing current The more appropriate measurement is the current input to the drive Current input to the drive can be compared to the published values of MCC and RLA Compressor Replacemen...

Page 14: ...ndem Cubic Centimeters Per Revolution 3 numeric characters Optional E POE Oil P POE R410A 1st Generation VS Only K1 Nominal Capacity Capacity at Rating Condition Multiplier 2 3 numeric characters K 1 000 M 10 000 C SCFM VARIABLE SPEED COMPRESSOR NOMENCLATURE Application Range Code Application Refgn Substance Compressed P AC HP R 410A B H Heat Pump Optimized R410A Figure 1 Compressor Nomenclature E...

Page 15: ...75 80 85 90 Tcond F Tevap F ZPV063 Operating Envelope 20 F 11 C SH 15 F 8 C SC 95 F 35 C Ambient Solid Line Boundaries OEM tes ng is required to monitor the DLT in the dashed line boundaries 2600 6000 RPM 2200 6000 RPM 1800 7200 RPM Tcond C Tevap C DLT 275 F 1000 7200 RPM An Oil Boost Cycle Is Required For Speeds 1000RPM 1800RPM Cycle Parameters 1000RPM 1800RPM For 2 Hours Ramp To 3600RPM For 5 Mi...

Page 16: ...ise superheat A cold sump may result in high refrigerant migration after shut down Figure 4 Oil Dilution Chart 30 25 20 15 10 5 0 5 10 24 14 4 6 16 26 36 10 0 10 20 30 40 50 60 70 80 90 100 110 20 10 0 10 20 30 40 50 Evaporating Temperature C Compressor Sump Temperature C Compressor Sump Temperature F Evaporating Temperature F 200 F 93 3 C Max Oil Temp Acceptable Unacceptable Too Much Refrigerant ...

Page 17: ... Add braze material to the joint while moving torch around joint to flow braze material around circumference After braze material flows around joint move torch to heat Area 3 This will draw the braze material down into the joint The time spent heating Area 3 should be minimal As with any brazed joint overheating may be detrimental to the final result Field Service WARNING Remove refrigerant charge...

Page 18: ...18 2016 Emerson Climate Technologies Inc AE4 1402 R4 Figure 6 ...

Page 19: ...arge Thermistors Fluid Brake Sight Glass Floating Seal 7 8 22 3mm Discharge Fitting 1 1 8 28 7mm Fixed Scroll BPM Motor Orbiting Scroll Counterweight Cup for Oil Circulation Positive Displacement Oil Pump Suction Fitting Management Figure 8 ZPV063 Cross Sectional View ...

Page 20: ...E 1 E 9 X X X First Character Second Character Third Character Follows VS Motor Type VS Fixed Tandem Follows Fixed Electrical Code E E E E F Z E W Y X E B X F C X W G Examples 2E9 TFD 2ZD 3X9 TF7 3C7 4E9 TE5 4E5 5X9 TEE 5BE Figure 9 Electrical Nomenclature For Multiples ...

Page 21: ...scharge Line Thermistor 085 0261 00 ZPV063 Fits 7 8 Tube Discharge Line Thermistor Molex Connector 085 0211 00 ZPV063 Fits 7 8 Tube Thermistor Clip 032 0688 04 ZPV063 7 8 Clip Suction Discharge Discharge Rotalock O Ring Seal 020 0028 02 ZPV063 Suction Rotalock O Ring Seal 020 0028 03 Discharge Rotalock Service Valve 7 8 998 0510 90 Suction Rotalock Service Valve 1 1 8 998 0510 99 Discharge Rotaloc...

Page 22: ... 1 Motor Poles 6 Motor Input Frequency Hertz 50 360 Recommended Switching Frequency Hertz 6 000 Table 2 Compressor Motor Specifications Drive Model EVC1150B K1 114 EVC1150B L1 114 EVC1150B J1 114 Compressor Model ZPV0631E 4E9 ZPV0631E 4E9 ZPV0631E 5E9 Drive Voltage Input 380 480 500 575 200 240 Drive Nominal Power 15 KW 15 KW 15 KW Drive Max Continuous Output Current 31 Amps 27 Amps 58 Amps NOTE C...

Page 23: ...s kg ZPV063 15 7 18 8 18 8 Charge allowance for system Speed Range RPM Default RPM Acceleration RPM Sec Deceleration RPM Sec Notes Range Default Range Default Start 3600 7200 3600 400 1000 1 0 NA NA 1 Run 1000 7200 200 RPM S Stop 1000 7200 3600 or Envelope Minimum NA NA 50 500 2 0 2 3 4 Notes 1 Once the compressor reaches 3600 RPM hold for two minutes prior to accelerating or decelerating 2 If env...

Reviews: