background image

QUICK START GUIDE

  EPC – EFFICIENT POWER CONVERSION CORPORATION   |   

WWW.EPC-CO.COM

   |   COPYRIGHT 2015   |                                                                                      |PAGE 3

Demonstration System EPC9509

The pre-regulator can also be disabled in a similar manner as the oscillator 
using JP50. However, note that this connection is floating with respect to the 
ground so removing the jumper for external connection requires a floating 
switch to correctly control this function. Refer to the datasheet of the con-
troller IC and the schematic in this QSG for specific details. 
The ZVS timing adjust circuits for the ZVS class D amplifiers are each  
independently settable to ensure highest possible efficiency setting and  
includes separate ZVS tank circuits. This allows OOK modulation capability 
for the amplifier.
The EPC9509 is provided with 3 LED’s that indicate the mode of operation 
of the system. If the system is operating in coil current limit mode, then the 
green LED will illuminate. For power limit mode, the yellow LED will illumi-
nate. Finally, when the pre-regulator reaches maximum output voltage the 
red LED will illuminate indicating that the system is no longer A4WP compli-
ant as the load impedance is too high for the amplifier to drive. When the 
load impedance is too high to reach power limit or voltage limit mode, then 
the current limit LED will illuminate incorrectly indicating current limit mode. 
This mode also falls outside the A4WP standard and by measuring the am-
plifier supply voltage across TP1 and TP2 will show that it has nearly reach 
the maximum value limit.
Single ended or Differential Mode operation
The EPC9509 amplifier can be operated in one of two modes; single-
ended or differential mode. Single ended operation offers higher amplifier  
efficiency but reduced imaginary impedance drive capability. If the  
reflected impedance of the tuned coil load exceeds the capability of  
the amplifier to deliver the desired power, then the amplifier can be 
switched over to differential mode. In differential mode, the amplifier is  
capable of driving an impedance range of 1 Ω through 56 Ω and ±50j Ω and 
maintains either the 800 mA

RMS

 coil current or deliver up to 16 W of power. 

The EPC9509 is set by default to differential mode and can be switched to 
single ended mode by inserting a jumper into J75. When inserted the ampli-
fier operates in the single-ended mode. Using an external pull down with 
floating collector/ drain connection will have the same effect. The external 
transistor must be capable of sinking 25 mA and withstand at least 6 V.
For differential mode only operation, the two ZVS inductors L

ZVS1

  and L

ZVS2

 

can be replaced by a single inductor L

ZVS12

 and by removing C

ZVS1 

and C

ZVS2

.

ZVS Timing Adjustment
Setting the correct time to establish ZVS transitions is critical to 
achieving high efficiency with the EPC9509 amplifier. This can be 
done by selecting the values for R71, R72, R77, and R78 or P71, P72, 
P77, and P78 respectively. This procedure is best performed using a 
potentiometer installed at the appropriate locations that is used to 
determine the fixed resistor values. The procedure is the same for both 
single-ended and differential mode of operation. The timing MUST  
initially be set WITHOUT the source coil connected to the amplifier.  
The timing diagrams are given in Figure 5 and should be referenced when 
following this procedure. Only perform these steps if changes have been 
made to the board as it is shipped preset. The steps are:
1.  With power off, remove the jumper in JP1 and install it into JP50 to place 

the EPC9509 amplifier into Bypass mode. Connect the main input power 
supply (+) to JP1 (bottom pin – for bypass mode) with ground connected 
to J1 ground (-) connection.

2.  With power off, connect the control input power supply bus (19 V) to (+) 

connector (J1). Note the polarity of the supply connector.

3. Connect a LOW capacitance oscilloscope probe to the probe-hole of 

the half-bridge to be set and lean against the ground post as shown in  
Figure 4.

4.  Turn on the control supply – make sure the supply is approximately 19 V.
5.  Turn on the main supply voltage starting at 0 V and increasing to the re-

quired predominant operating value (such as 24 V but NEVER exceed the 
absolute maximum voltage of 52 V). 

6.  While observing the oscilloscope adjust the applicable potentiometers to 

so achieve the green waveform of figure 5.

7.  Repeat for the other half-bridge.
8. Replace the potentiometers with fixed value resistors if required. Remove 

the jumper from JP50 and install it back into JP1 to revert the EPC9509 
back to pre-regulator mode.

Determining component values for L

ZVS

The ZVS tank circuit is not operated at resonance, and only provides the  
necessary negative device current for self-commutation of the output  
voltage at turn off. The capacitors C

ZVS1

 and C

ZVS2

 are chosen to have a 

very small ripple voltage component and are typically around 1 µF. The  
amplifier supply voltage, switch-node transition time will determine the 
value of inductance for L

ZVSx

 which needs to be sufficient to maintain 

ZVS operation over the DC device load resistance range and coupling 
between the device and source coil range and can be calculated using  
the following equation:
 

 

 

                                                      

                       (1) 

Where:
Δt

vt

   

=  Voltage Transition Time [s]

ƒ

SW

  

=  Operating Frequency [Hz]

C

OSSQ

 

=  Charge Equivalent Device Output Capacitance [F]

C

well

    

=  Gate driver well capacitance [F]. Use 20 pF for the LM5113

NOTE

 that the amplifier supply voltage V

AMP

 is absent from the equation as  

it is accounted for by the voltage transition time. The C

OSS

 of the EPC2108 

eGaN FETs is very low and lower than the gate driver well capacitance C

well

  

which as a result must now be included in the ZVS timing calculation. 
The charge equivalent capacitance can be determined using the following  
equation:

 

             

                                                                  

                    (2) 

            
To add additional immunity margin for shifts in coil impedance, the 

value of L

ZVS

 can be decreased to increase the current at turn off 

of the devices (which will increase device losses). Typical voltage  

transition times range from 2ns through 12ns. For the 

 

differential case the voltage and charge (C

OSSQ

) are doubled when  

calculating the ZVS inductance.

L

ZVS   

=          

t

vt

8 ∙ f

sw

∙ C

OSSQ 

+ C

well

C

OSSQ 

  

V

AMP  

 

 ∙ 

0

VAMP

 C

OSS

 (v) ∙ dv

1

Summary of Contents for EPC2108 EPC2036

Page 1: ...Demonstration System EPC9509 Quick Start Guide EPC2108andEPC2036 6 78MHz ZVSClass DWirelessPowerAmplifier...

Page 2: ...The Amplifier Board EPC9509 Figure 1 shows the system block diagram of the EPC9509 ZVS class D amplifier with pre regulator and figure 2 shows the details of the ZVS class D amplifier section The pre...

Page 3: ...at the appropriate locations that is used to determine the fixed resistor values The procedure is the same for both single ended and differential mode of operation The timing MUST initially be set WIT...

Page 4: ...sure the entire system is fully assembled prior to making electrical connections and make sure jumper JP1 has been removed and installed in JP50 to disable the pre regulator and place the EPC9509 in...

Page 5: ...or Jumper JP1 J1 VIN Bypass Mode Connection 17 24 VDC VIN Supply Note Polarity Source Coil Connection External Oscillator Switch node Main Oscilloscope probe Switch node Secondary Oscilloscope probe G...

Page 6: ...nt of the switch nodes using the hole and ground post Figure 5 ZVS timing diagrams Do not use probe ground lead Ground probe against post Place probe tip in large via Minimize loop Shoot through Q2 tu...

Page 7: ...F 10 V TDK C1005X7S1A105M050BC 2 12 C2_a C2_b C4_a C4_b C35 C51 C70 C71 C72 C77 C78 C81 100 nF 16 V W rth 885012205037 3 3 C3_a C3_b C95 22 nF 25 V W rth 885012205052 4 2 C5_a C5_b DNP 100 nF 16 V W...

Page 8: ...1 R53 1 00k Panasonic ERJ 2RKF1001X 68 1 R54 0 Yageo RC0402JR 070RL 69 1 R60 40 m 0 4 W Vishay Dale WSLP0603R0400FEB 70 1 R61 150 m 0 25 W Vishay Dale WSL0805R1500FEA18 71 2 R71 R78 124 Panasonic ERJ...

Page 9: ...probeloop 1 TP 2 V AMP V AMP 5 V G N D L IN OUT H IN a EP C9509_SE_ZVSclass D_Rev1_0 SchDoc 390 nH L zvs1 390 nH L zvs2 DNP L zvs12 1 F 50 V C zvs2 V AMP V AMP 5 V G ND L IN OUT H IN b EPC9509_SE_ZVS...

Page 10: ...LM5113TM OUT GU GL D1 BAT54KFILM 5 V 4 7 V 4 7 V GL 20 1 2 R2 SDM03U40 D3 EMPTY Synchronous Bootstrap Power Supply 1 F 10 V C1 D4 CD0603 Z5V1 Gbtst 27k 1 2 R3 D2 SDM03U40 22 nF 25 V C3 GND 5 V OUT V A...

Page 11: ...W R6 1 6 2 3 EP 4 5 LDO V REF VSS 1 V DD U80 UCC27611DRV 47k 1 2 R33 D36 D35 Current Mode Power Mode Pmon Imon Vsepic V OUT 634 1 2 R35 5 V 8 2k 1 1 2 R32 51 0k 1 1 2 R31 V OUT V Vsepic Pcmp DC Power...

Page 12: ...nCorporation EPC makesnoguaranteethatthepurchasedboardis100 RoHScompliant No Licensesareimpliedorgrantedunderanypatentrightorotherintellectualpropertywhatsoever EPCassumesnoliabilityforapplicationsass...

Reviews: