background image

 

11 

 

 

Figure 13. Noise (~840

µ

V

rms

 measured with a true rms voltmeter in DC - 10MHz) with the 

offset control switched to ‘Off’. The noise may appear to be higher than shown here if the 

amplifier input is not connected to a low-impedance source. 

 

 

 

Figure 14. Noise (~1150

µ

V

rms

 measured with a true rms voltmeter in DC - 10MHz) with the 

offset control switched to ‘On’. In addition to the noise the short-term drift of the offset is 

around 5mV. 

 

 

 

Figure 15. Rms output noise voltage versus capacitive load measured in DC - 10MHz with 

offset control switched ‘Off’ 

 
 

Time (ms)

O

ut

pu

vo

lta

ge

 (

mV

)

-3

-2

-1

0

1

2

50

40

30

20

10

0

Time (ms)

O

ut

pu

vo

lta

ge

 (

mV

)

-4

-2

0

2

50

40

30

20

10

0

Load capacitance (pF)

Rm

s

ou

tp

ut

 vo

lta

ge

 n

oi

se

V

)

800

600

400

200

0

10

1

10

2

10

3

10

4

10

5

10

6

10

7

Summary of Contents for WMA-100A

Page 1: ...alco Systems WMA 100A model is a high quality cost effective high voltage linear laboratory amplifier Its wide bandwidth and large voltage range make it an excellent choice for use with MEMS devices E...

Page 2: ...e for indoor use in a class II environment domestic light industrial Non sinusoidal mains power generators cannot be used to power this product Detailed properties of the WMA 100A high voltage amplifi...

Page 3: ...t a 50W coaxial load resistor to the input Fig 2 The noise voltage at the output can be measured using a sensitive amplifier The output noise will be lower when the bandwidth of the amplifier is reduc...

Page 4: ...es should be used for connecting both the input and the output and their length should be minimized If not the cables will cause overshoot due to cable reflections an effect related to the finite spee...

Page 5: ...ferent capacitive loads Figure 6 Sine wave 300Vpp 1kHz Frequency Hz Amplification factor 20 15 10 5 0 10 2 10 3 10 4 10 5 10 6 10 7 0pF 100pF 1nF 10nF 100nF 1uF 10uF 20 15 10 5 0 10 2 10 3 10 4 10 5 1...

Page 6: ...wave 300Vpp 1kHz Figure 9 Square wave 300Vpp 100kHz Time ms Output voltage V 150 100 50 0 50 100 150 2 0 1 5 1 0 0 5 0 0 Time ms Output voltage V 150 100 50 0 50 100 150 2 0 1 5 1 0 0 5 0 0 Time s Ou...

Page 7: ...tep response are shown Figure 11a 300Vpp step response 10 90 up in 0 8 s Figure 11b 300Vpp step response 10 90 down in 0 8 s Time s Output voltage V 0 4 0 2 0 0 0 2 0 4 20 15 10 5 0 Time s Output volt...

Page 8: ...mits the speed at which the capacitor can be charged The bandwidth adjustments of the amplifier with different capacitive loads preventing overshoot are clearly visible Note the difference of the hori...

Page 9: ...gure 12c 1nF load Figure 12d 10nF load Time s Output voltage V 150 100 50 0 50 100 150 20 15 10 5 0 Time s Output voltage V 150 100 50 0 50 100 150 40 30 20 10 0 Time s Output voltage V 150 100 50 0 5...

Page 10: ...12f 1 F load Figure 12g 10 F load Time ms Output voltage V 150 100 50 0 50 100 150 2 0 1 5 1 0 0 5 0 0 Time ms Output voltage V 150 100 50 0 50 100 150 20 15 10 5 0 Time ms Output voltage V 150 100 5...

Page 11: ...ith a true rms voltmeter in DC 10MHz with the offset control switched to On In addition to the noise the short term drift of the offset is around 5mV Figure 15 Rms output noise voltage versus capaciti...

Page 12: ...apacitive and resistive loads no overshoot 5 Power 230V 50Hz AC 50W or 115V 60 Hz AC 50W Mains fuse 2x 0 25A 250V slow blow 230V version or 2x 0 5A 250V slow blow 115V version Safety Class I requires...

Page 13: ...he product resulting from use or operation in other ways than specified in the user manual Malfunctioning due to misuse or abuse of the product Malfunctioning occurring after changes or repairs have b...

Reviews: