background image

 

 

 

Figure 3. Offset circuitry ‘On-Off’ switch and offset control knob 

 

 
The load 

 
The  output  impedance  of  the  WMA-100A 
model  is  50Ω,  to  ensure  stability  with  all 
capacitive loads. The amplifier is generally 
used  for  high-impedance  applications 
where  the  load  is  capacitive.  This  is  the 
case  for  MEMS  devices,  EO-modulators 
and piezo’s alike. It should be noted that a 
coaxial  cable  itself  also  presents  a 
capacitive load of approximately 100pF/m. 
The  cable  that  is  connected  may  limit  the 
maximum 

usable 

current 

at 

high 

frequencies.  
Matched loading with a 50Ω load circuit is 
possible  by  connecting  a  50Ω  resistor  in 
series with the output to ground, but is not 
recommended.  Excessively  long  cables 
will  not  distort  the  waveforms,  but  the 
disadvantage  is  a  highly  reduced  voltage 
range  (100mA  in  50Ω  gives  5V  maximum 
output voltage instead of 170V maximum). 
With  sensitive  and/or  high-frequency 
measurements,  coaxial  cables  should  be 
used for connecting both the input and the 
output,  and  their  length  should  be 
minimized.  If  not,  the  cables  will  cause 
overshoot  due  to  cable  reflections  (an 
effect  related  to  the  finite  speed  of  light), 
and  current  limiting  due  to  the  cable 
capacitance.  Although  the  amplifier  itself 
remains  fully  stable,  using  less  than  5 
meter of output cable is recommended for 
the WMA-100A amplifier to obtain optimal 
results. 
 
 

 
Transmitter mode 

 
This  amplifier  can  generate  a  significant 
amount  of  power  at  frequencies  used  for 
radio  transmission  and  reception.  The 
amplifier  should  not  be  used  for 
telecommunication  as  described  in  the 
R&TTE  directive  95/5/EC.  Always  use 
coaxial cables.  
 
  

Amplifier characteristics 

 
In  the  following  pages,  several  amplifier 
characteristics are illustrated: 
- Frequency response as a function of 
capacitive load (Fig. 4, 5) 
- Sine and triangle wave responses (Fig. 
6, 7) 
- Square wave response (Fig. 8, 9, 10) 
- Step response (Fig. 11) 
- Capacitive load dependency of square 
wave output (Fig. 12) 
- Noise with and without offset control 
engaged (Fig. 13, 14) 
- Rms output noise voltage versus 
capacitive load (Fig. 15) 
 
 
 
 
 
 
 
 
 

 

Summary of Contents for WMA-100A

Page 1: ...alco Systems WMA 100A model is a high quality cost effective high voltage linear laboratory amplifier Its wide bandwidth and large voltage range make it an excellent choice for use with MEMS devices E...

Page 2: ...e for indoor use in a class II environment domestic light industrial Non sinusoidal mains power generators cannot be used to power this product Detailed properties of the WMA 100A high voltage amplifi...

Page 3: ...t a 50W coaxial load resistor to the input Fig 2 The noise voltage at the output can be measured using a sensitive amplifier The output noise will be lower when the bandwidth of the amplifier is reduc...

Page 4: ...es should be used for connecting both the input and the output and their length should be minimized If not the cables will cause overshoot due to cable reflections an effect related to the finite spee...

Page 5: ...ferent capacitive loads Figure 6 Sine wave 300Vpp 1kHz Frequency Hz Amplification factor 20 15 10 5 0 10 2 10 3 10 4 10 5 10 6 10 7 0pF 100pF 1nF 10nF 100nF 1uF 10uF 20 15 10 5 0 10 2 10 3 10 4 10 5 1...

Page 6: ...wave 300Vpp 1kHz Figure 9 Square wave 300Vpp 100kHz Time ms Output voltage V 150 100 50 0 50 100 150 2 0 1 5 1 0 0 5 0 0 Time ms Output voltage V 150 100 50 0 50 100 150 2 0 1 5 1 0 0 5 0 0 Time s Ou...

Page 7: ...tep response are shown Figure 11a 300Vpp step response 10 90 up in 0 8 s Figure 11b 300Vpp step response 10 90 down in 0 8 s Time s Output voltage V 0 4 0 2 0 0 0 2 0 4 20 15 10 5 0 Time s Output volt...

Page 8: ...mits the speed at which the capacitor can be charged The bandwidth adjustments of the amplifier with different capacitive loads preventing overshoot are clearly visible Note the difference of the hori...

Page 9: ...gure 12c 1nF load Figure 12d 10nF load Time s Output voltage V 150 100 50 0 50 100 150 20 15 10 5 0 Time s Output voltage V 150 100 50 0 50 100 150 40 30 20 10 0 Time s Output voltage V 150 100 50 0 5...

Page 10: ...12f 1 F load Figure 12g 10 F load Time ms Output voltage V 150 100 50 0 50 100 150 2 0 1 5 1 0 0 5 0 0 Time ms Output voltage V 150 100 50 0 50 100 150 20 15 10 5 0 Time ms Output voltage V 150 100 5...

Page 11: ...ith a true rms voltmeter in DC 10MHz with the offset control switched to On In addition to the noise the short term drift of the offset is around 5mV Figure 15 Rms output noise voltage versus capaciti...

Page 12: ...apacitive and resistive loads no overshoot 5 Power 230V 50Hz AC 50W or 115V 60 Hz AC 50W Mains fuse 2x 0 25A 250V slow blow 230V version or 2x 0 5A 250V slow blow 115V version Safety Class I requires...

Page 13: ...he product resulting from use or operation in other ways than specified in the user manual Malfunctioning due to misuse or abuse of the product Malfunctioning occurring after changes or repairs have b...

Reviews: