• Normal Stop (STOP)
• Very-Low Power Stop (VLPS)
• Very-Low-Leakage Stop (VLLSx)
13.4.5.1 STOP mode
STOP mode is entered via the sleep-now or sleep-on-exit with the SLEEPDEEP bit set in
the System Control Register in the ARM core.
The MCG module can be configured to leave the reference clocks running.
A module capable of providing an asynchronous interrupt to the device takes the device
out of STOP mode and returns the device to normal RUN mode. Refer to the device's
Power Management chapter for peripheral, I/O, and memory operation in STOP mode.
When an interrupt request occurs, the CPU exits STOP mode and resumes processing,
beginning with the stacking operations leading to the interrupt service routine.
A system reset will cause an exit from STOP mode, returning the device to normal RUN
mode via an MCU reset.
13.4.5.2 Very-Low-Power Stop (VLPS) mode
VLPS mode can be entered in one of two ways:
• Entry into stop via the sleep-now or sleep-on-exit with the SLEEPDEEP bit set in the
System Control Register in the ARM core while the MCU is in VLPR mode and
STOPM=010 or 000 in the PMCTRL register.
• Entry into stop via the sleep-now or sleep-on-exit with the SLEEPDEEP bit set in the
System Control Register in the ARM core while the MCU is in normal RUN mode
and STOPM=010 in the PMCTRL register. When VLPS is entered directly from
RUN mode, exit to VLPR is disabled by hardware and the system will always exit
back to RUN.
In VLPS, the on-chip voltage regulator remains in its stop regulation state as in VLPR.
A module capable of providing an asynchronous interrupt to the device takes the device
out of VLPS and returns the device to VLPR mode.
A system reset will also cause a VLPS exit, returning the device to normal RUN mode.
Functional description
KL02 Sub-Family Reference Manual, Rev. 2.1, July 2013
178
Freescale Semiconductor, Inc.