2.4.1 ARM Cortex-M0+ core modules
The following core modules are available on this device.
Table 2-2. Core modules
Module
Description
The ARM Cortex-M0+ is the newest member of the Cortex M Series of processors
targeting microcontroller applications focused on very cost sensitive, deterministic,
interrupt driven environments. The Cortex M0+ processor is based on the ARMv6
Architecture and Thumb®-2 ISA and is 100% instruction set compatible with its
predecessor, the Cortex-M0 core, and upward compatible to Cortex-M3 and M4
cores.
The ARMv6-M exception model and nested-vectored interrupt controller (NVIC)
implement a relocatable vector table supporting many external interrupts, a single
non-maskable interrupt (NMI), and priority levels.
The NVIC replaces shadow registers with equivalent system and simplified
programmability. The NVIC contains the address of the function to execute for a
particular handler. The address is fetched via the instruction port allowing parallel
register stacking and look-up. The first sixteen entries are allocated to ARM
internal sources with the others mapping to MCU-defined interrupts.
The primary function of the Asynchronous Wake-up Interrupt Controller (AWIC) is
to detect asynchronous wake-up events in stop modes and signal to clock control
logic to resume system clocking. After clock restart, the NVIC observes the
pending interrupt and performs the normal interrupt or event processing.
For high-speed, single-cycle access to peripherals, the Cortex-M0+ processor
implements a dedicated single-cycle I/O port.
Most of this device's debug is based on the ARM CoreSight
™
architecture. One
debug interface is supported:
• Serial Wire Debug (SWD)
2.4.2 System modules
The following system modules are available on this device.
Table 2-3. System modules
Module
Description
System integration module (SIM)
The SIM includes integration logic and several module configuration settings.
The SMC provides control and protection on entry and exit to each power mode,
control for the power management controller (PMC), and reset entry and exit for
the complete MCU.
Power management controller (PMC)
The PMC provides the user with multiple power options. Multiple modes are
supported that allow the user to optimize power consumption for the level of
functionality needed. Includes power-on-reset (POR) and integrated low voltage
detect (LVD) with reset (brownout) capability and selectable LVD trip points.
Table continues on the next page...
Module functional categories
KL02 Sub-Family Reference Manual, Rev. 2.1, July 2013
32
Freescale Semiconductor, Inc.