5-122
L30 Line Current Differential System
GE Multilin
5.5 FLEXLOGIC
5 SETTINGS
5
ELEMENT:
Negative-sequence
overvoltage
NEG SEQ OV1 PKP
NEG SEQ OV1 DPO
NEG SEQ OV1 OP
Negative-sequence overvoltage element has picked up
Negative-sequence overvoltage element has dropped out
Negative-sequence overvoltage element has operated
NEG SEQ OV2...
Same set of operands as shown for NEG SEQ OV1
ELEMENT:
Negative-sequence
time overcurrent
NEG SEQ TOC1 PKP
NEG SEQ TOC1 OP
NEG SEQ TOC1 DPO
Negative-sequence time overcurrent 1 has picked up
Negative-sequence time overcurrent 1 has operated
Negative-sequence time overcurrent 1 has dropped out
NEG SEQ TOC2
Same set of operands as shown for NEG SEQ TOC1
ELEMENT:
Neutral
instantaneous
overcurrent
NEUTRAL IOC1 PKP
NEUTRAL IOC1 OP
NEUTRAL IOC1 DPO
Neutral instantaneous overcurrent 1 has picked up
Neutral instantaneous overcurrent 1 has operated
Neutral instantaneous overcurrent 1 has dropped out
NEUTRAL IOC2
Same set of operands as shown for NEUTRAL IOC1
ELEMENT:
Neutral time
overcurrent
NEUTRAL TOC1 PKP
NEUTRAL TOC1 OP
NEUTRAL TOC1 DPO
Neutral time overcurrent 1 has picked up
Neutral time overcurrent 1 has operated
Neutral time overcurrent 1 has dropped out
NEUTRAL TOC2
Same set of operands as shown for NEUTRAL TOC1
ELEMENT:
Neutral directional
overcurrent
NTRL DIR OC1 FWD
NTRL DIR OC1 REV
Neutral directional overcurrent 1 forward has operated
Neutral directional overcurrent 1 reverse has operated
NTRL DIR OC2
Same set of operands as shown for NTRL DIR OC1
ELEMENT:
Synchrophasor
phasor data
concentrator
PDC NETWORK CNTRL 1
PDC NETWORK CNTRL 2
PDC NETWORK CNTRL 16
Phasor data concentrator asserts control bit 1 as received via the network
Phasor data concentrator asserts control bit 2 as received via the network
Phasor data concentrator asserts control bit 16 as received via the network
ELEMENT:
Phase directional
overcurrent
PH DIR1 BLK A
PH DIR1 BLK B
PH DIR1 BLK C
PH DIR1 BLK
Phase A directional 1 block
Phase B directional 1 block
Phase C directional 1 block
Phase directional 1 block
PH DIR2
Same set of operands as shown for PH DIR1
ELEMENT:
Phase
instantaneous
overcurrent
PHASE IOC1 PKP
PHASE IOC1 OP
PHASE IOC1 DPO
PHASE IOC1 PKP A
PHASE IOC1 PKP B
PHASE IOC1 PKP C
PHASE IOC1 OP A
PHASE IOC1 OP B
PHASE IOC1 OP C
PHASE IOC1 DPO A
PHASE IOC1 DPO B
PHASE IOC1 DPO C
At least one phase of phase instantaneous overcurrent 1 has picked up
At least one phase of phase instantaneous overcurrent 1 has operated
All phases of phase instantaneous overcurrent 1 have dropped out
Phase A of phase instantaneous overcurrent 1 has picked up
Phase B of phase instantaneous overcurrent 1 has picked up
Phase C of phase instantaneous overcurrent 1 has picked up
Phase A of phase instantaneous overcurrent 1 has operated
Phase B of phase instantaneous overcurrent 1 has operated
Phase C of phase instantaneous overcurrent 1 has operated
Phase A of phase instantaneous overcurrent 1 has dropped out
Phase B of phase instantaneous overcurrent 1 has dropped out
Phase C of phase instantaneous overcurrent 1 has dropped out
PHASE IOC2 and higher
Same set of operands as shown for PHASE IOC1
ELEMENT:
Phase overvoltage
PHASE OV1 PKP
PHASE OV1 OP
PHASE OV1 DPO
PHASE OV1 PKP A
PHASE OV1 PKP B
PHASE OV1 PKP C
PHASE OV1 OP A
PHASE OV1 OP B
PHASE OV1 OP C
PHASE OV1 DPO A
PHASE OV1 DPO B
PHASE OV1 DPO C
At least one phase of overvoltage 1 has picked up
At least one phase of overvoltage 1 has operated
All phases of overvoltage 1 have dropped out
Phase A of overvoltage 1 has picked up
Phase B of overvoltage 1 has picked up
Phase C of overvoltage 1 has picked up
Phase A of overvoltage 1 has operated
Phase B of overvoltage 1 has operated
Phase C of overvoltage 1 has operated
Phase A of overvoltage 1 has dropped out
Phase B of overvoltage 1 has dropped out
Phase C of overvoltage 1 has dropped out
ELEMENT:
Phase time
overcurrent
PHASE TOC1 PKP
PHASE TOC1 OP
PHASE TOC1 DPO
PHASE TOC1 PKP A
PHASE TOC1 PKP B
PHASE TOC1 PKP C
PHASE TOC1 OP A
PHASE TOC1 OP B
PHASE TOC1 OP C
PHASE TOC1 DPO A
PHASE TOC1 DPO B
PHASE TOC1 DPO C
At least one phase of phase time overcurrent 1 has picked up
At least one phase of phase time overcurrent 1 has operated
All phases of phase time overcurrent 1 have dropped out
Phase A of phase time overcurrent 1 has picked up
Phase B of phase time overcurrent 1 has picked up
Phase C of phase time overcurrent 1 has picked up
Phase A of phase time overcurrent 1 has operated
Phase B of phase time overcurrent 1 has operated
Phase C of phase time overcurrent 1 has operated
Phase A of phase time overcurrent 1 has dropped out
Phase B of phase time overcurrent 1 has dropped out
Phase C of phase time overcurrent 1 has dropped out
PHASE TOC2
Same set of operands as shown for PHASE TOC1
Table 5–10: L30 FLEXLOGIC OPERANDS (Sheet 3 of 7)
OPERAND TYPE
OPERAND SYNTAX
OPERAND DESCRIPTION
Summary of Contents for L30
Page 10: ...x L30 Line Current Differential System GE Multilin TABLE OF CONTENTS ...
Page 30: ...1 20 L30 Line Current Differential System GE Multilin 1 5 USING THE RELAY 1 GETTING STARTED 1 ...
Page 370: ...5 244 L30 Line Current Differential System GE Multilin 5 10 TESTING 5 SETTINGS 5 ...
Page 464: ...A 10 L30 Line Current Differential System GE Multilin A 1 PARAMETER LISTS APPENDIX A A ...
Page 600: ...C 30 L30 Line Current Differential System GE Multilin C 7 LOGICAL NODES APPENDIX C C ...
Page 610: ...D 10 L30 Line Current Differential System GE Multilin D 1 IEC 60870 5 104 APPENDIX D D ...
Page 622: ...E 12 L30 Line Current Differential System GE Multilin E 2 DNP POINT LISTS APPENDIX E E ...
Page 634: ...F 12 L30 Line Current Differential System GE Multilin F 3 WARRANTY APPENDIX F F ...
Page 644: ...x L30 Line Current Differential System GE Multilin INDEX ...