5-158
F60 Feeder Protection System
GE Multilin
5.5 FLEXLOGIC
5 SETTINGS
5
Figure 5–59: FLEXLOGIC WORKSHEET
5.
Following the procedure outlined, start with parameter 99, as follows:
99: The final output of the equation is virtual output 3, which is created by the operator "= Virt Op n". This parameter is
therefore "= Virt Op 3."
98: The gate preceding the output is an AND, which in this case requires two inputs. The operator for this gate is a 2-
input AND so the parameter is “AND(2)”. Note that FlexLogic rules require that the number of inputs to most types
of operators must be specified to identify the operands for the gate. As the 2-input AND will operate on the two
operands preceding it, these inputs must be specified, starting with the lower.
97: This lower input to the AND gate must be passed through an inverter (the NOT operator) so the next parameter is
“NOT”. The NOT operator acts upon the operand immediately preceding it, so specify the inverter input next.
96: The input to the NOT gate is to be contact input H1c. The ON state of a contact input can be programmed to be
set when the contact is either open or closed. Assume for this example the state is to be ON for a closed contact.
The operand is therefore “Cont Ip H1c On”.
95: The last step in the procedure is to specify the upper input to the AND gate, the operated state of digital element 2.
This operand is "DIG ELEM 2 OP".
Writing the parameters in numerical order can now form the equation for virtual output 3:
[95] DIG ELEM 2 OP
[96] Cont Ip H1c On
[97] NOT
[98] AND(2)
[99] = Virt Op 3
It is now possible to check that this selection of parameters will produce the required logic by converting the set of parame-
ters into a logic diagram. The result of this process is shown below, which is compared to the logic for virtual output 3 dia-
gram as a check.
Figure 5–60: FLEXLOGIC EQUATION FOR VIRTUAL OUTPUT 3
6.
Repeating the process described for virtual output 3, select the FlexLogic parameters for Virtual Output 4.
99: The final output of the equation is virtual output 4 which is parameter “= Virt Op 4".
98: The operator preceding the output is timer 2, which is operand “TIMER 2". Note that the settings required for the
timer are established in the timer programming section.
01
02
03
04
05
97
98
99
.....
827029A1.VSD
FLEXLOGIC ENTRY n:
NOT
FLEXLOGIC ENTRY n:
AND (2)
FLEXLOGIC ENTRY n:
=Virt Op 3
97
98
99
FLEXLOGIC ENTRY n:
DIG ELEM 2 OP
FLEXLOGIC ENTRY n:
Cont Ip H1c On
95
96
AND
VIRTUAL
OUTPUT 3
827030A2.VSD
Summary of Contents for F60
Page 10: ...x F60 Feeder Protection System GE Multilin TABLE OF CONTENTS ...
Page 30: ...1 20 F60 Feeder Protection System GE Multilin 1 5 USING THE RELAY 1 GETTING STARTED 1 ...
Page 138: ...4 28 F60 Feeder Protection System GE Multilin 4 2 FACEPLATE INTERFACE 4 HUMAN INTERFACES 4 ...
Page 454: ...5 316 F60 Feeder Protection System GE Multilin 5 10 TESTING 5 SETTINGS 5 ...
Page 500: ...7 14 F60 Feeder Protection System GE Multilin 7 1 COMMANDS 7 COMMANDS AND TARGETS 7 ...
Page 508: ...8 8 F60 Feeder Protection System GE Multilin 8 2 FAULT LOCATOR 8 THEORY OF OPERATION 8 ...
Page 522: ...10 12 F60 Feeder Protection System GE Multilin 10 6 DISPOSAL 10 MAINTENANCE 10 ...
Page 660: ...B 116 F60 Feeder Protection System GE Multilin B 4 MEMORY MAPPING APPENDIX B B ...
Page 706: ...E 10 F60 Feeder Protection System GE Multilin E 1 IEC 60870 5 104 APPENDIX E E ...
Page 718: ...F 12 F60 Feeder Protection System GE Multilin F 2 DNP POINT LISTS APPENDIX F F ...
Page 728: ...H 8 F60 Feeder Protection System GE Multilin H 2 ABBREVIATIONS APPENDIX H H Z Impedance Zone ...
Page 730: ...H 10 F60 Feeder Protection System GE Multilin H 3 WARRANTY APPENDIX H H ...