GE Multilin
F60 Feeder Protection System
B-1
APPENDIX B
B.1 MODBUS RTU PROTOCOL
B
APPENDIX B MODBUS COMMUNICATIONSB.1MODBUS RTU PROTOCOL
B.1.1 INTRODUCTION
The UR series supports several communications protocols to allow connection to equipment such as personal computers,
remote terminal units (RTUs), supervisory control and data acquisition (SCADA) masters, and programmable logic control-
lers. The Modicon Modbus protocol is the most basic protocol supported by the UR. Modbus RTU is available via the
RS232 and RS485 serial links, and Modbus TCP/IP is available over Ethernet. The following description is intended primar-
ily for users who want to develop their own master communication drivers. Note that:
•
The UR always acts as a slave device, meaning that it never initiates communications. It listens and responds to
requests issued by a master computer.
•
A subset of Modbus RTU and Modbus TCP/IP protocol format is supported that allows extensive monitoring, program-
ming, and control functions using read and write register commands.
B.1.2 PHYSICAL LAYER
Each data byte is transmitted in an asynchronous format consisting of 1 start bit, 8 data bits, 1 stop bit, and possibly 1 parity
bit. This produces a 10 or 11 bit data frame. This can be important for transmission through modems at high bit rates (11 bit
data frames are not supported by many modems at baud rates greater than 300).
The faceplate RS232 port is intended for local use and is fixed at 19200 bit/s baud and even parity. The rear terminal
RS485 port can be set for baud rates of 300, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 33600, 38400, 57600, or
115200 bps, and even, odd, and no parity options are available. See the
Communications
section of chapter 5 for details.
The Modbus TCP/IP protocol is available on each of the rear Ethernet ports. These ports are 100Base-FX.
B.1.3 DATA LINK LAYER
Modbus RTU communications takes place in packets that are groups of asynchronously framed byte data. The master
transmits a packet to the slave and the slave responds with a packet. The following information describes the general for-
mat for both transmit and receive packets. For details on packet formatting, see subsequent sections describing each func-
tion code.
•
SLAVE ADDRESS:
This is the address of the slave device that is intended to receive the packet sent by the master
and to perform the desired action. Each slave device on a communications bus must have a unique address to prevent
bus contention. All of the relay’s ports have the same address which is programmable from 1 to 254; see chapter 5 for
details. Only the addressed slave will respond to a packet that starts with its address. Note that the faceplate port is an
exception to this rule; it will act on a message containing any slave address.
A master transmit packet with slave address 0 indicates a broadcast command. All slaves on the communication link
take action based on the packet, but none respond to the master.
•
FUNCTION CODE:
This is one of the supported functions codes of the unit which tells the slave what action to per-
form. See the
Supported Function Codes
section for details. An exception response from the slave is indicated by set-
ting the high order bit of the function code in the response packet. See the
Exception Responses
section for details.
•
DATA:
This will be a variable number of bytes depending on the function code. This may include actual values, set-
tings, or addresses sent by the master to the slave or by the slave to the master.
•
CRC:
This is a two byte error checking code. The RTU version of Modbus includes a 16-bit cyclic redundancy check
(CRC-16) with every packet which is an industry standard method used for error detection. If a Modbus slave device
receives a packet in which an error is indicated by the CRC, the slave device does not act upon or respond to the
Table B–1: MODBUS RTU PACKET FORMAT
DESCRIPTION
SIZE
SLAVE ADDRESS
1 byte
FUNCTION CODE
1 byte
DATA
N bytes
CRC
2 bytes
DEAD TIME
3.5 bytes transmission time
Summary of Contents for F60
Page 10: ...x F60 Feeder Protection System GE Multilin TABLE OF CONTENTS ...
Page 30: ...1 20 F60 Feeder Protection System GE Multilin 1 5 USING THE RELAY 1 GETTING STARTED 1 ...
Page 138: ...4 28 F60 Feeder Protection System GE Multilin 4 2 FACEPLATE INTERFACE 4 HUMAN INTERFACES 4 ...
Page 454: ...5 316 F60 Feeder Protection System GE Multilin 5 10 TESTING 5 SETTINGS 5 ...
Page 500: ...7 14 F60 Feeder Protection System GE Multilin 7 1 COMMANDS 7 COMMANDS AND TARGETS 7 ...
Page 508: ...8 8 F60 Feeder Protection System GE Multilin 8 2 FAULT LOCATOR 8 THEORY OF OPERATION 8 ...
Page 522: ...10 12 F60 Feeder Protection System GE Multilin 10 6 DISPOSAL 10 MAINTENANCE 10 ...
Page 660: ...B 116 F60 Feeder Protection System GE Multilin B 4 MEMORY MAPPING APPENDIX B B ...
Page 706: ...E 10 F60 Feeder Protection System GE Multilin E 1 IEC 60870 5 104 APPENDIX E E ...
Page 718: ...F 12 F60 Feeder Protection System GE Multilin F 2 DNP POINT LISTS APPENDIX F F ...
Page 728: ...H 8 F60 Feeder Protection System GE Multilin H 2 ABBREVIATIONS APPENDIX H H Z Impedance Zone ...
Page 730: ...H 10 F60 Feeder Protection System GE Multilin H 3 WARRANTY APPENDIX H H ...