5-48
D30 Line Distance Protection System
GE Multilin
5.2 PRODUCT SETUP
5 SETTINGS
5
b) PRECISION TIME PROTOCOL (1588)
PATH: SETTINGS
PRODUCT SETUP
REAL TIME CLOCK
PRECISION TIME PROTOCOL (1588)
PATH: SETTINGS
PRODUCT SETUP
REAL TIME CLOCK
PRECISION TIME PROTOCOL (1588)
PTP PORT 1(3)
The UR supports the Precision Time Protocol (PTP) specified in IEEE Std 1588 2008 using the Power Profile (PP) specified
in IEEE Std C37.238 2011. This enables the relay to synchronize to the international time standard over an Ethernet net-
work that implements PP.
The relay can be configured to operate on some PTP networks that are not strictly PP. Time accuracy can be less than
specified for a PP network. Tolerated deviations from strict PP include 1) missing declaration of PP compliance in the mes-
sages, 2) connection to a network device that does not support the PTP peer delay mechanism, 3) jitter substantially
greater than 1 µs in received event messages, and 4) certain non-compliant announce and sync message update rates.
The relay implements PTP according to IEEE Std 1588 2008 and the equivalent IEC 61588:2009(E), sometimes
referred to as version 2 PTP. It does not support the previous version of the standard (version 1).
PTP is a protocol that allows multiple clocks in a network to synchronize with one another. It permits synchronization accu-
racies better than 1 ns, but this requires each and every component in the network achieve very high levels of accuracy and
a very high baud rate, faster than normally used for relay communications. When operating over a generic Ethernet net-
work, time error may amount to 1 ms or more. PP is a profile of PTP which specifies a limited subset of PTP suitable for use
in power system protection, control, automation and data communication applications, and thereby facilitates interoperabil-
ity between different vendor’s clocks and switches. PP specifies a worst-case delivered time error of less than 1 µs over a
16-hop network.
In a PTP system and in a PP system, the clocks automatically organize themselves into a master-slave synchronization
hierarchy with the “best” clock available making itself the "grandmaster" at the top of the hierarchy; all others make them-
selves “slaves” and track the grandmaster. Typically the grandmaster clock receives its time from GPS satellites or some
other link to the international time standard. If the grandmaster fails, the next “best” clock available in the domain assumes
the grandmaster role. Should a clock on starting up discover it is “better” that the present grandmaster, it assumes the
grandmaster role and the previous grandmaster reverts to slave.
Time messages issued by the grandmaster are delayed as they pass through the network both due to the finite speed of
the signal in the interconnecting fiber or wire, and due to processing delays in the Ethernet switches. Each clock and switch
implementing PP measures the propagation delay to each of its PP neighbors, and compensates for these delays in the
time received. Each network device implementing PP measures the processing delay it introduces in each time message
and compensates for this delay in the time it transmits. As a result, the time delivered to end-devices such as the UR are
PRECISION TIME
PROTOCOL (1588)
STRICT POWER PROFILE:
Disabled
Range: Enabled, Disabled
MESSAGE
PTP DOMAIN NUMBER
0
Range: 0 to 255
MESSAGE
PTP VLAN PRIORITY
4
Range: 0 to 7
PTP VLAN ID
0
Range: 0 to 4095
MESSAGE
PTP PORT 1
MESSAGE
PORT 1 PTP FUNCTION:
Disabled
Range: Enabled, Disabled
MESSAGE
PORT 1 PATH DELAY
ADDER:
00000 ns
Range: 0 to 60 000 ns in steps of 1
MESSAGE
PORT 1 PATH DELAY
ASYMMETRY:
0000 ns
Range: –1 000 to +1 000 ns in steps of 1
NOTE
Summary of Contents for D30D00HCHF8AH6AM6BP8BX7A
Page 10: ...x D30 Line Distance Protection System GE Multilin TABLE OF CONTENTS...
Page 374: ...5 248 D30 Line Distance Protection System GE Multilin 5 10 TESTING 5 SETTINGS 5...
Page 398: ...6 24 D30 Line Distance Protection System GE Multilin 6 5 PRODUCT INFORMATION 6 ACTUAL VALUES 6...
Page 410: ...7 12 D30 Line Distance Protection System GE Multilin 7 2 TARGETS 7 COMMANDS AND TARGETS 7...
Page 444: ...9 24 D30 Line Distance Protection System GE Multilin 9 5 FAULT LOCATOR 9 THEORY OF OPERATION 9...
Page 576: ...B 102 D30 Line Distance Protection System GE Multilin B 4 MEMORY MAPPING APPENDIX B B...
Page 616: ...D 10 D30 Line Distance Protection System GE Multilin D 1 IEC 60870 5 104 PROTOCOL APPENDIX D D...
Page 628: ...E 12 D30 Line Distance Protection System GE Multilin E 2 DNP POINT LISTS APPENDIX E E...
Page 636: ...F 8 D30 Line Distance Protection System GE Multilin F 3 WARRANTY APPENDIX F F...
Page 646: ...x D30 Line Distance Protection System GE Multilin INDEX...