background image

 

D1014 

- SIL 2 Repeater Power Supply Hart compatible 

G.M. International ISM0052-16 

Functional Safety Manual and Application 

Application for D1014S or D1014D, with passive input (2 wires Tx)

 

 

Failure category

 

Failure rates (FIT)

 

λ

dd

 = Total Dangerous Detected failures 

158.64 

λ

du

 = Total Dangerous Undetected failures 

23.69 

λ

sd

 = Total Safe Detected failures 

0.00 

λ

su

 = Total Safe Undetected failures 

0.00 

λ

tot safe

 = Total Failure Rate (Safety Function) = 

λ

dd

 + 

λ

du

 + 

λ

sd

 + 

λ

su

 

182.33

 

MTBF (safety function, single channel) = (1 / 

λ

tot safe

) + MTTR (8 hours)

 

626 years

 

λ

no effect

 = “No effect” failures 

165.77 

λ

not part

 = “Not Part” failures 

15.90 

λ

tot device

 = Total Failure Rate (Device) = 

λ

tot safe

 + 

λ

no effect

 + 

λ

not part

 

364.00

 

MTBF (device, single channel) = (1 / 

λ

tot device

) + MTTR (8 hours)

 

313 years

 

λ

sd

 

λ

su

 

λ

dd

 

λ

du

 

SFF

 

0.00 FIT 

0.00 FIT 

158.64 FIT 

23.69 FIT 

87.01% 

DC

D

 

87.01% 

DC

S

 

0% 

T[Proof] = 1 year

 

T[Proof] = 9 years 

PFDavg = 1.05 E-04 - Valid for 

SIL 2

 

PFDavg = 9.47 E-04 - Valid for 

SIL 2

 

PFDavg vs T[Proof] table 

(assuming Proof Test coverage of 99%), ), with determination of SIL supposing module contributes >10% of total SIF dangerous failures: 

PFDavg vs T[Proof] table

 (assuming Proof Test coverage of 99%), with determination of SIL supposing module contributes 

10%  of total SIF dangerous failures: 

Failure rates table according to IEC 61508:2010 Ed.2 : 

Failure rate table:

 

Safety Function and Failure behavior:

 

D1014 is considered to be operating in Low Demand mode, as a Type A module, having Hardware Fault Tolerance (HFT) = 0. 
The failure behaviour of the D1014 S and D1014D modules (when the output current range is 4 to 20 mA) is described by the following definitions: 

 

Fail-Safe State: it is defined as the output going to Fail Low or Fail High, considering that the Safety logic solver can convert the Low or High failures (dangerous detected failures) 
to the Fail-Safe state. 

 

Fail Safe: failure mode that causes the module / (sub)system to go to the defined fail-safe state without a demand from the process. 

 

Fail Dangerous: failure mode that does not respond to a demand from the process (i.e. being unable to go to the defined Fail-Safe state) or deviates the output current by more 
than 5% (0.8 mA) of full span. 

 

Fail High: failure mode that causes the output signal to go above the maximum output current (> 20 mA). Assuming that the application program in the Safety logic solver is config-
ured to detect High failures and does not automatically trip on these failures, this failure mode has been classified as a dangerous detected (DD) failure. 

 

Fail Low: failure mode that causes the output signal to go below the minimum output current (< 4 mA). Assuming that the application program in the Safety logic solver is config-
ured to detect Low failures and does not automatically trip on these failures, this failure mode has been classified as a dangerous detected (DD) failure. 

 

Fail “No Effect”: failure mode of a component that plays a part in implementing the Safety Function but that is neither a safe failure nor a dangerous failure. 
When calculating the SFF, this failure mode is not taken into account. 

 

Fail “Not part”: failure mode of a component which is not part of the safety function but part of the circuit diagram and is listed for completeness. 
When calculating the SFF this failure mode is not taken into account. 

The 2 channels of D1014D module could be used to increase the hardware fault tolerance, needed for a higher SIL of a certain Safety Function, as they are they are completely inde-
pendent each other, not containing common components. In fact, the analysis results got for D1014S (single channel) are also valid for each channel of D1014D (double channel). 
Failure rate date: taken from Siemens Standard SN29500.

 

Description: 

For this application, enable 4 - 20 mA source or sink mode for ch. 1 or ch. 2, setting the internal dip-switches in the following mode (see page 9-10 for more information): 

D1014S 

or 

D1014D 

Source/Sink I  

Channel 1 

Channel 2 

(only for D1014D)

 

 

Out 2 

5 +  

6 - 

Safety 

PLC 

Input 

 

1 + 

2 - 

Out 1 

Safety 

PLC 

Input 

The module is powered by connecting 12-24 Vdc power supply to Pins 3 (+ positive) - 4 (- negative) for Ch. 1 and Pins 7 (+ positive) - 8 (- negative) for Ch. 2.  
The green LEDs are lit in presence of each power supply line. 
The passive input signals from 2 wires Tx are applied to Pins 14-15 (In 1 - Ch.1) and Pins 10-11 (In 2 - Ch.2). 
The source or sink output currents are applied to Pins 1-2 (for Channel 1) and Pins 5-6 (for Channel 2). 

T[Proof] = 10 years

 

PFDavg = 1.05 E-03 - Valid for 

SIL 2

 

 

Supply  

12-24 Vdc 

3 / 7  + 

-  4 / 8 

+ 14 

 - 15 

 

In 1 

 

 + 10 

Source/Sink I  

Dip-switch position (D1014S) 

1 2 3 4 

4 - 20 mA Source mode 

ON ON OFF OFF 

4 - 20 mA Sink mode 

OFF OFF OFF  ON 

Dip-switch position (D1014D) 

1 2 3 4 5 6 7 8 

4 - 20 mA Source mode ch. 1  

ON ON OFF OFF ON ON OFF OFF 

4 - 20 mA Sink mode ch. 1 

OFF OFF OFF  ON  OFF OFF OFF  ON 

 

In 2 

 

2 wires Tx 

- 11 

Systematic capability SIL 3.

 

2 wires Tx 

Summary of Contents for D1014D

Page 1: ...D1014 SIL 2 Repeater Power Supply Hart compatible ISM0052 16 D1014S D1014D INSTRUCTION SAFETY MANUAL SIL 2 Repeater Power Supply Hart compatible DIN Rail Models D1014S D1014D ...

Page 2: ...ion accuracy 0 1 of full scale Linearity error 0 1 of full scale Supply voltage influence 0 05 of full scale for a min to max supply change Load influence 0 05 of full scale for a 0 to 100 load resistance change Temperature influence 0 01 on zero and span for a 1 C change Compatibility CE mark compliant conforms to Directive 2014 34 EU ATEX 2014 30 EU EMC 2014 35 EU LVD 2011 65 EU RoHS Environment...

Page 3: ...N Rail and plug in terminal blocks 250 Vrms Um max voltage allowed to the instruments associated with the barrier Not used Terminal block connections HAZARDOUS AREA SAFE AREA Input Ch 2 for 2 wire Transmitters Input Ch 2 for 2 wire Transmitters Not used Not used Input Ch 1 for 2 wire Transmitters Input Ch 1 for 2 wire Transmitters Not used 9 10 11 12 13 14 15 16 Output Ch 1 for Current Source mode...

Page 4: ...A D NOTE for USA and Canada IIC equal to Gas Groups A B C D E F and G IIB equal to Gas Groups C D E F and G IIA equal to Gas Groups D E F and G For installations in which both the Ci and Li of the Intrinsically Safe apparatus exceed 1 of the Co and Lo parameters of the Associated Apparatus excluding the cable then 50 of Co and Lo parameters are applicable and shall not be exceeded 50 of the Co and...

Page 5: ...C SAFE AREA ZONE 2 GROUP IIC T4 NON HAZARDOUS LOCATIONS CLASS I DIVISION 2 GROUPS A B C D T Code T4 CLASS I ZONE 2 GROUP IIC T4 MODEL D1014D 14 15 3 4 1 2 RL mA mA V HHT Ch 1 Supply 12 24 Vdc Source I Source V Sink I Out 1 HHT 2 Wire Tx I In 1 10 11 5 6 RL mA mA V Source I Source V Sink I Out 2 2 Wire Tx In 2 RL RL HHT HHT I 7 8 Ch 2 Supply 12 24 Vdc MODEL D1014S 14 15 3 4 1 2 RL mA mA V HHT Ch 1 ...

Page 6: ...fety logic solver is config ured to detect High failures and does not automatically trip on these failures this failure mode has been classified as a dangerous detected DD failure Fail Low failure mode that causes the output signal to go below the minimum output current 4 mA Assuming that the application program in the Safety logic solver is config ured to detect Low failures and does not automati...

Page 7: ...ished via conduit connections or another acceptable Division 2 Zone 2 wiring method according to the NEC and the CEC Not to be connected to control equipment that uses or generates more than 250 Vrms or Vdc with respect to earth ground D1014 series must be installed operated and maintained only by qualified personnel in accordance to the relevant national international installation standards e g I...

Page 8: ...responding section as an example Connect 12 24 Vdc power supply positive at terminal 3 and negative at terminal 4 for channel 1 For Model D1014D connect 12 24 Vdc power supply positive at terminal 7 and negative at terminal 8 for channel 2 For Model D1014S connect positive output of channel 1 at terminal 1 and negative output at 2 For Model D1014D in addition to channel 1 connections above connect...

Page 9: ...allows the mA sink or source mode or Volt operating mode configuration Configuration Side A Panel View Span Trimmer CH1 Screwdriver for Trimmers 1 x 0 5 mm Dip switch configuration Ω Ω Vtx Adjust Ch1 Screwdriver for Trimmers 2 x 0 5 mm Zero Trimmer CH1 Calibration Trimmer Ch1 Turn the trimmer clockwise to Increase Output value or turn the trimmer counterclockwise if you want to decrease Output val...

Page 10: ...ly is the same for all channels there for don t separate the terminals because one channel remains switched off Different power supply Cut both pins of the connector to open the wiring between the terminals using a wire cutter Turn the trimmer clockwise to Increase Output value or turn the trimmer counterclockwise if you want to decrease Output value Turn the trimmer clockwise to Increase Output v...

Page 11: ...llow step 1 Out 2 PS Supply _ Out 1 DMM V1 CAL In 2 V1 CAL In 1 DMM mA mA mA mA MODEL D1014D 14 15 3 4 1 2 10 11 5 6 7 8 V V Out 2 PS Supply _ Out 1 DMM V1 CAL In 2 V1 CAL In 1 DMM mA mA MODEL D1014D 14 15 3 4 1 2 10 11 5 6 7 8 If the maximum deviation is exceeded repeat the board calibration and proceed in the following way Set the calibrator CAL at 20 000 mA and regulate the current read by mult...

Reviews: