background image

22

  Holding freezer 

40 

80

  Packaged Holding center 

40 

80

  Cutting Room 

20 

30

  Meat Chill Room 

80 

120

  Boxed Banana Ripening 

120 

200

  Vegetables and Fruit Storage 

30 

60

  Blast Freezer 

150 

300

  Work Areas 

20 

30 

  Unpackaged Meat Storage 

30 

60

                                                                  Recommended Number 

                                                                       of Air Changes

          Type of Application 

Minimum 

Maximum

  -1,000 

31.02 

15.27 

.0778 

1.04 

1.03 

1.005

  -500 

30.47 

14.97 

.0763 

1.02 

1.02 

1.002

 

29.92 

14.70 

.0749 

1.00 

1.00 

1.00

  500 

29.38 

14.43 

.0735 

0.98 

0.98 

0.995

  1,000 

28.86 

14.28 

.0719 

0.96 

0.96 

0.998

  2,000 

27.82 

13.67 

.0697 

0.93 

0.93 

0.985

  3,000 

26.81 

13.27 

.0671 

0.90 

0.90 

0.98

  4,000 

25.84 

12.70 

.0647 

0.86 

0.875 

0.975

  5,000 

24.89 

12.23 

.0623 

0.83 

0.85 

0.969

  6,000 

23.98 

11.78 

.0600 

0.80 

0.82 

0.960

  7,000 

23.09 

11.34 

.0578 

0.77 

0.79 

0.955

  8,000 

22.22 

10.92 

.0556 

0.74 

0.76 

0.946

  9,000 

21.38 

10.50 

.0535 

0.71 

0.73 

0.939

  10,000 

20.58 

10.11 

.0515 

0.69 

0.71 

0.93

  12,000 

19.03 

9.35 

.0477 

0.64 

0.66 

0.91

  14,000 

17.57 

8.63 

.0439 

0.59 

0.61 

0.88

  Altitude 

Absolute 

Pressure 

Standard 

                       Capacity

 

Feet 

 

 

Air 

                       Multipliers

  Above 

 

 

Density 

Air             Direct Drive Fans

 

Sea 

 

 

At 70ºF. 

Dens. 

Refrig. 

 Air Cooled

 

Level 

In. Hg. 

PSIA 

lbs./Cu.Ft. 

Ratio 

Evap. 

 Cond. Unit

4. Type of Operation/Air Flow

Two important considerations in the selection and location of the 

unit cooler are uniform air distribution and air velocities which are 

compatible with the particular application.

The direction of the air and air throw should be such that there 

is movement of air where there is a heat gain; this applies to the 

room walls and ceiling as well as the product. The unit cooler(s) 

should be arranged to direct its discharge air at any doors or 

openings, if it all possible. Avoid placing the unit cooler in a 

position close to a door where it may induce additional infiltration 

in to the room; this can cause fan icing and a condition known as 

hoar-frost. Also, avoid placing a unit in the air stream of another 

unit, because defrosting difficulties can result.

For general storage coolers and holding freezers, there are not 

criteria for air velocities within the room. The total supply of air 

is such that  approximately 40 to 80 air changes occur each hour. 

This is an air conditioning term which is calculated as follows:

                        Air Changes = (total cfm*) x 60        

                                                internal room volume

 

* includes all unit coolers and auxiliary fans

This equation disregards the air motion which is induced by the 

discharge air from the unit cooler. For simplicity, the gross volume 

of the room is used unless the product and equipment occupy 

more than 10% of the volume. Specific applications such as 

cutting rooms and banana ripening rooms have desired limits. The 

table below indicates the minimum and maximum quantities of air 

for particular applications. 

Derating Factors

 

A.  Ambient

 

B.  Altitude

 

C.  Saturated Suction Temperature (S.S.T.)

 

D.  50 Cycle Power

In the selection of refrigeration equipment it should be noted 

that the manufacturer’s equipment has ratings based on certain 

criteria. Care should be taken to determine actual job conditions 

and the proper derating factors should be applied. These factors 

may vary by manufacturer but can be used here as rule of thumb 

approximation.

A. Ambient

Condensing unit ambient is of concern as most equipment is 

generally cataloged as 90º to 95ºF. ambient.

 

Decrease condensing unit capacity 6% for each 10ºF. increase 

 

in operating ambient.

 

Increase condensing unit capacity 6% for each 10ºF. decrease 

 

in operating ambient.

Recommended Air Changes/Hour

B. Altitude

Most manufacturers rate their equipment at sea level conditions. 

An increase in altitude results in a decrease in air density. While 

the fans on direct drive equipment will deliver a constant cubic 

feet per minute of air regardless of density, the thinness of the 

air will affect capacity performance. Belt drive equipment can be 

speeded up to compensate for the decrease in air density.

C. Suction Temperature

Care should be taken in the selection of unit coolers, especially 

freezer models. There is no set rating standard adopted by the 

industry for the ratings criteria. The model number of a low 

temperature unit cooler can be rated at -30º SST,  -20º SST, -10º 

SST, 0º SST, or even +10º SST. The capacity difference between 

the -30º SST and the +10º SST can be as much as 15% higher for 

the lower rated unit cooler. Most manufacturers provide a suction 

temperature correction factor for their unit coolers and this 

should be noted in equipment selections.

D. 50 Cycle Power

Since we live in a “global village,” the opportunity to quote 

refrigeration equipment for export markets is one not to be 

ignored. Motors that are sized for 60 cycle operation run at 83% 

(50/60) speed on 50 cycles operation. Compressors produce only 

5/6 of their capacity. However, while fans are only running 83% 

speed, there is also a decrease in static pressure through the 

condenser or unit cooler coil and performance does not suffer the 

full 17% penalty. If it has been verified by the manufacturer that 

their equipment can be run on 50 cycle power then the following 

derating factors can be applied:

  A.  

Unit coolers and air-cooled condensers (Capacity x 0.92)

  B. 

Air-cooled condensing units (capacity x .85)

System capacity (unit cooler and air-cooled condensing unit) can 

be derated by 0.88

To select refrigeration equipment after the load has been 

determined, divide the BTUH required by (0.88):

     BTUH  =  Conversion to select 60 cycle 

      0.88        equipment for 50 cycle load

This provides for larger equipment necessary to compensate for 

50 cycle derating factor.

Effects of Altitude on Air Cooled Equipment

Summary of Contents for H-ENGM0408

Page 1: ...ENGM0408 April 2008 Replaces H ENGM0806 August 2006 Engineering Manual Head Pressure Control Valve Oil Separator Compressor Suction Accumulator Suction Filter Evaporator Condenser Liquid Line Solenoi...

Page 2: ...e it the number one choice of convenience store owners everywhere Right source Right parts Right now We are your link to a complete line of dependable and certified commercial refrigeration parts acce...

Page 3: ...s of various liquids and solids 18 16 Banana room refrigeration requirement 19 17 Meat cutting or preparation room 19 18 Rapid load selection for back bars 19 19 Refrigeration requirements for hardeni...

Page 4: ...arated into the following main sources of heat for a given 24 hour period 1 Transmission load 2 Air change load 3 Miscellaneous load 4 Product load Accuracy Accuracy in calculation is the first step i...

Page 5: ...y operated lift trucks are used in refrigerated rooms which represent a heat gain of 8 000 to 15 000 BTU hr or more over the period of operation If motor or loading conditions are not known then calcu...

Page 6: ...simplify the calculation and tabulation of refrigeration loads there are two forms available Bulletin Above32 05 is used for all rooms above 32 F 0 C Bulletin Below32 05 is used for all rooms below 32...

Page 7: ...x BTU lbs 24 hrs Table 8 For consideration of previously loaded product a multiplier of 5 is normally applied to the daily product load Line 4 Divide by No of Operating Hrs 16 to obtain BTUH Cooling R...

Page 8: ...lbs 24 hrs Table 8 b lbs stored x BTU lbs 24 hrs Table 8 For consideration of previously loaded product a multiplier of 5 is normally applied to the daily product load Line 4 Divide by No of Operating...

Page 9: ...e 7 x F Temp Drop For product pulldown time other than 24 hrs figure 24 hr load x 24 Pulldown Time 5 Product Load Respiration a lbs stored x BTU lbs 24 hrs Table 8 b lbs stored x BTU lbs 24 hrs Table...

Page 10: ...al Temp Drop b gallons of ice cream day x BTU gal Table 19 For product pulldown time other than 24 hrs figure 24 hr load x 24 Pulldown Time Divide by No of Operating Hrs 18 to obtain BTUH Cooling Requ...

Page 11: ...ice cream day x BTU gal Table 19 For product pulldown time other than 24 hrs figure 24 hr load x 24 Pulldown Time Divide by No of Operating Hrs 18 to obtain BTUH Cooling Requirement Equipment Selecti...

Page 12: ...Table 7 Product Load Figured 24 hr Pulldown a lbs day x Spec Heat above freezing x F Intial Temp Drop lbs day x Latent Heat Fusion lbs day x Spec Heat below freezing x F Intial Temp Drop b gallons of...

Page 13: ...0 6 Concrete Floor 4 8 5 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 Insulation Inches Heat Load BTU Per 24 Hours Per One Square Foot of Outside Surface Cork Glass Urethane or...

Page 14: ...1 7 0 36 0 41 1 86 2 09 2 17 2 43 2 49 2 79 2 85 3 24 30 1 1 0 24 0 29 0 58 0 66 2 00 2 24 2 26 2 53 2 64 2 94 2 95 3 35 25 3 9 0 41 0 45 0 75 0 83 2 09 2 42 2 44 2 71 2 79 3 16 3 14 3 54 20 6 7 0 56...

Page 15: ...months 8 0 0 50 0 31 53 40 Processed Cheese 40 65 70 12 months 19 0 0 50 0 31 56 40 Butter 40 75 85 1 months 4 to 31 0 50 0 25 23 Cream 35 40 2 3 weeks 31 0 0 66 0 80 0 36 0 42 79 107 Ice Cream 20 to...

Page 16: ...32 90 2 4 weeks 30 3 0 90 0 46 124 33 Pears 29 31 90 95 2 7 months 29 2 0 86 0 45 118 47 Peas Green 32 95 1 3 weeks 30 9 0 79 0 42 106 23 Peppers Sweet 45 50 90 95 2 3 weeks 30 7 0 94 0 47 132 41 Pep...

Page 17: ...0 5 85 11 55 11 00 25 75 Beans Green or Snap 4 60 5 70 16 05 22 05 Beans Lima 1 15 1 60 2 15 3 05 11 00 13 70 Beets Topped 1 35 2 05 3 60 Broccoli 3 75 5 50 8 80 16 90 25 00 Brussels Sprouts 1 65 4 15...

Page 18: ...s 150 0 76 104 35 Sheep 45 0 76 101 33 Hogs 180 0 54 106 35 Table 12 Heat equivalent of Occupancy BTU per HP HR Motor Connected Connected Losses Load Motor Load In Outside Outside HP Refr Space1 Refr...

Page 19: ...87 600 75 85 700 72 81 800 69 78 900 67 75 1000 65 73 1200 62 69 Room Loads based on continuous operation and includes allowance for average number of personnel processing equipment etc with glass pa...

Page 20: ...nd temperature design conditions Design Design Ground Dry Bulb Wet Bulb Temp State City F C F C F C Nebraska Omaha 95 35 78 26 60 16 Nevada Reno 95 35 65 18 65 18 New Hamp Concord 90 32 73 23 55 13 Ne...

Page 21: ...hr to be sure that the unit cooler is large enough to balance properly with the condensing unit Low relative humidity requirements permit higher T D which in turn will allow selection of unit coolers...

Page 22: ...of air for particular applications Derating Factors A Ambient B Altitude C Saturated Suction Temperature S S T D 50 Cycle Power In the selection of refrigeration equipment it should be noted that the...

Page 23: ...l 1 5 safety factor sometimes applied to handle initial high rate of product heat evolution Ice Cream Hardening 10 F Heavy Duty 10 hour pull down with product 30 frozen and a certain percentage over r...

Page 24: ...ere low and normal temperature is being maintained Allow sufficient space between rear of unit cooler and wall to permit free return of air Refer to unit manufacturers catalog for proper space Always...

Page 25: ...0 1 1 8 1 3 8 1 3 8 1 5 8 1 5 8 1 5 8 1 3 8 1 3 8 1 5 8 1 5 8 2 1 8 2 1 8 1 3 8 1 5 8 1 5 8 1 5 8 2 1 8 2 1 8 72 000 1 1 8 1 3 8 1 5 8 1 5 8 1 5 8 2 1 8 1 3 8 1 3 8 1 5 8 1 5 8 2 1 8 2 1 8 1 3 8 1 5 8...

Page 26: ...8 2 1 8 2 1 8 2 5 8 5 8 5 8 7 8 7 8 7 8 7 8 72 000 1 5 8 2 1 8 2 1 8 2 1 8 2 5 8 2 5 8 1 5 8 2 1 8 2 1 8 2 1 8 2 5 8 2 5 8 5 8 5 8 7 8 7 8 7 8 7 8 78 000 1 5 8 2 1 8 2 1 8 2 1 8 2 5 8 2 5 8 1 5 8 2 1...

Page 27: ...1 3 8 1 3 8 1 3 8 1 5 8 1 5 8 1 1 8 1 3 8 1 3 8 1 5 8 1 5 8 1 5 8 1 3 8 1 3 8 1 5 8 78 000 1 1 8 1 1 8 1 3 8 1 3 8 1 3 8 1 5 8 1 1 8 1 3 8 1 3 8 1 3 8 1 5 8 1 5 8 1 1 8 1 3 8 1 5 8 1 5 8 1 5 8 2 1 8...

Page 28: ...1 2 1 2 5 8 5 8 5 8 5 8 66 000 1 5 8 2 1 8 2 1 8 1 3 8 1 3 8 1 5 8 1 5 8 2 1 8 2 1 8 1 3 8 1 5 8 1 5 8 2 1 8 2 1 8 2 1 8 1 2 1 2 5 8 5 8 5 8 5 8 72 000 1 5 8 2 1 8 2 1 8 1 3 8 1 5 8 1 5 8 1 5 8 2 1 8...

Page 29: ...1 1 8 1 3 8 1 3 8 1 5 8 1 5 8 1 5 8 1 1 8 1 3 8 1 5 8 1 5 8 1 5 8 1 5 8 1 3 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 3 8 1 5 8 1 5 8 78 000 1 1 8 1 3 8 1 3 8 1 5 8 1 5 8 2 1 8 1 3 8 1 3 8 1 5 8 1 5 8 1 5 8 2...

Page 30: ...5 8 2 1 8 1 2 1 2 5 8 5 8 5 8 5 8 66 000 1 5 8 1 5 8 2 1 8 1 3 8 1 5 8 1 5 8 1 5 8 1 5 8 2 1 8 1 3 8 1 5 8 1 5 8 1 5 8 1 5 8 2 1 8 1 2 5 8 5 8 5 8 5 8 5 8 72 000 1 5 8 2 1 8 2 1 8 1 5 8 1 5 8 1 5 8 1...

Page 31: ...g Tee Straight Through 1 2 2 3 4 4 5 7 8 10 12 14 16 Table 25 Pressure Loss of Liquid Refrigerants in Liquid Line Risers Expressed in Pressure Drop PSIG and Subcooling Loss F Liquid Line Rise in Feet...

Page 32: ...3 8 7 8 1 1 8 7 8 1 1 8 1 1 8 100 1 5 8 1 1 8 1 3 8 1 1 8 1 3 8 1 3 8 180 000 50 1 5 8 1 1 8 1 3 8 1 1 8 1 3 8 1 3 8 100 1 5 8 1 3 8 1 5 8 1 3 8 1 5 8 1 5 8 240 000 50 1 5 8 1 3 8 1 3 8 1 3 8 1 5 8 1...

Page 33: ...1 3 27 26 39 63 86 1 24 134a 64 2 2 57 14 26 40 61 1 91 1 3 8 22 63 5 3 50 27 42 64 93 1 33 R507 404A 55 0 4 98 40 58 95 1 32 1 87 134a 90 9 3 65 20 37 57 87 1 30 1 5 8 22 90 0 4 96 37 59 90 1 33 1 8...

Page 34: ...6 7 44 111 2 40 0 104 219 2 73 3 164 327 4 26 1 15 5 0 7 2 45 113 0 40 6 105 221 0 73 9 165 329 0 25 6 14 6 8 7 8 46 114 8 41 1 106 222 8 74 4 166 330 8 25 0 13 8 6 8 3 47 116 6 41 7 107 224 6 75 0 16...

Page 35: ...2 F Density of Water 62 4 lbs Cu Ft Specific Heat of Water 1 BTU lb F Latent Heat of 970 BTU lb at 212 F Atm Vaporization 1054 3 BTU lb at 70 F Specific Heat of Ice 0 5 BTU lb F Latent Heat of Fusion...

Page 36: ...ubic Foot of Brick Building 112 120 1 Cubic Foot of Concrete 120 140 1 Cubic Foot of Earth 70 120 at 32 F at 70 F and 29 92 Hg To Convert Measurements From To Multiply By Cubic Feet Cubic Centimeters...

Page 37: ...ng A decrease in dry bulb and sensible heat content represented by a horizontal line directed to the loft along the constant specific humidity line Specific humidity and dew point remain constant 3 Ev...

Page 38: ...ure of 29 921 in HG Atmospheric Pressure at other altitude Altitude Pressure Ft in HG 1000 31 02 500 30 47 0 29 92 500 29 38 1000 28 86 2000 27 82 3000 26 83 4000 25 84 5000 24 90 6000 23 98 7000 23 0...

Page 39: ...39 Appendix Charts Medium Temperature Psychrometric Chart 32 to 130 F Standard Atmospheric Pressure of 29 921 in HG Courtesy of ASHRAE Reproduced by permission...

Page 40: ...antaneous evaporation of refrigerant in a pressure reducing device to cool the refrigerant to the evaporations temperature obtained at the reduces pressure 22 Flooded System system in which only part...

Page 41: ...x8 216 12775 16359 12072 15459 11807 16080 12767 17464 13726 18847 12x20x8 240 13681 17440 12928 16481 12573 17052 13599 18524 14626 19995 12x22x8 264 14549 18474 13749 17458 13299 17974 14392 19541 1...

Page 42: ...o loads to allow for service For product pull down greater than 10 degrees divide pull down temperature by 10 Multiply this number by the BTUH shown on Table A then add to Box Load Floor Approx 65 R H...

Page 43: ...at left of graph Follow it across to the straight line curve Then drop down to total load line at bottom of graph Total load for this example is 224 000 BTUH Select equipment accordingly Material orig...

Page 44: ...serve the right to make changes in specifications without notice CLIMATE CONTROL Commercial Refrigeration Parts The name behind the brands you trust Heatcraft Refrigeration Products LLC 2175 West Park...

Reviews: