background image

5

[ (4.88) (  door height) (area/2) (minutes open) (  temp. diff. ºF.)
  (enthalpy incoming air – enthaply warehouse air) ] [ (1–X)]
                          Specific Volume of Incoming Air

Where X = % of heat transmission blocked by thermal barrier.

For freezers it becomes necessary to provide heat in the base slab 

to avoid freezing of the ground water and heaving of the floor. 

Minimum slab temperature should be at least 40ºF. Normally, 55ºF. 

should be used for freezer applications.

2. Air Change Load

(a) Average Air Change- when the door to a refrigerated room is 

opened, warm outside air will enter the room. This air must be 

cooled to the refrigerated room temperature, resulting in an 

appreciable source of heat gain. This load is sometimes called 

the infiltration load. The probable number of air changes per 

day and the heat that must be removed from each cubic foot 

of the infiltrated air, are given in tables based on experience 

(see Table 4, 5 & 6, page 14). For heavy usage, the infiltration 

may be doubled or more.

(b) Infiltration Through a Fixed Opening- As an alternate to the 

average air change method using the Psychrometric Chart 

(page 37), the following formulas may be used to calculate 

the infiltration resulting from natural ventilation (no wind) 

through external door openings.

 

The air change load can be substantial and every means 

should be taken to reduce the amount of infiltration entering 

the box. Some effective means of minimizing this load are:

 

• Automatic closing refrigerator doors

 

• Vestibules or refrigerated anterooms

 

• Plastic strip curtains

 

• Air Curtains

 

• Inflated bumpers on outside loading doors.

3. Miscellaneous Loads

 

Although most of the heat load in a refrigerated room 

or freezer is caused by wall heat leakage, air changes and 

product cooling or freezing, there are three other heat 

sources that should not be overlooked prior to the selection 

of the refrigeration equipment. Since the equipment has to 

maintain temperature under design conditions, these loads are 

generally averaged to a 24 hour period to provide for capacity 

during these times.

(a) Lights- typically storage requirements are 1 to 1-1/2 watt per 

square foot. Cutting or processing rooms can be double the  

wattage. Each watt is multiplied by 3.42 BTU/watt to obtain a 

BTUH figure. This is then multiplied by 24 to obtain a  

daily figure.

(b) Motors- smaller motors are usually less efficient and tend to 

generate more heat per horsepower as compared to larger  

motors. For this reason Table 11, on page 18, is broken down 

in to H.P. groups. Also, motors inside the  refrigerated area will  

reject all of their heat losses as shown in Table 11. However, 

motors that are located outside but do the work inside, like 

a conveyor, will reject less heat into the refrigerated space. If 

powered material handling equipment is used, such as forklift  

trucks, this must be included under Motor Heat  Loads. 

Generally only battery operated lift trucks are used in 

refrigerated rooms, which represent a heat gain of 8,000 to 

15,000 BTU/hr. or more over the period of operation. If motor 

or loading conditions are not known, then calculate one 

motor horsepower for each 16,000 cubic foot box in a storage 

cooler and one HP for each 12,500 C.F. in a storage freezer 

which allows for fan motors and some forklift operations. 

These figures can be higher in a heavily used area, i.e. loading 

dock or distribution warehouse.

(c) Occupancy- People working in the refrigerated storage area 

dissipate heat at a rate depending on the room temperature  

(Table 12, page 18). Multiple occupancies for short periods 

should be averaged over a 24 hour period. If occupancy load 

is not known, allow one person per 24 hour for each 25,000 

cubic foot space.

4. Product Load

 

Whenever a product having a higher temperature is placed 

in a refrigerator or freezer room, the product will lose its 

heat until it reaches the storage temperature. This heat load 

consists of three separate components: (see Table 7, page 15-

16).

(a) Specific Heat- The amount of heat  that must be removed 

from one pound of product to reduce the temperature of this  

pound by 1ºF., is called its specific heat. It has two values: one  

applies when the product is above freezing; the second is 

applicable after the product has reached its freezing point.

(b) Latent Heat- The amount of heat that must be removed from

one pound of product to freeze this pound is called the latent  

heat of fusion.

 

Most products have a freezing point in the range of 26ºF. to  

31ºF. If the exact temperature is unknown, it may be  

assumed to be 28ºF.

 

There is a definite relationship between the latent heat of  

fusion and the water content of the product and its specific 

and latent heats.

 

Estimating specific and latent heats:

 

Sp. Ht. above freezing = 0.20 + (0.008 X % water)

 

Sp. Ht. below freezing = 0.20 + (0.008 X % water)

 

Latent Heat = 143.3 X % water

(c) Respiration- Fresh fruits and vegetables are alive. Even in 

refrigerated storage they generate heat which is called the  

heat of respiration. They continually undergo a change in 

which energy is released in the form of heat, which varies with 

the type and temperature of the product. Tabulated values are  

usually in BTU/lb./24 hours (Table 8, page 17), and are applied 

to the total weight of product being stored and not just the 

daily turnover.

(d) Pull down Time- When a product load is to be calculated at 

other than a 24 hour pull down, a correction factor must be 

multiplied to the product load.  

 

   

 

     24 hours

 

   

 

Pull down Time 

 

Note: While product pull down can be calculated, no 

guarantee should be made regarding final product 

temperature due to many uncontrollable factors (i.e., type of 

packaging, position in the box, method of stacking, etc.)

5. Safety Factor

 

When all four of  the main sources of heat are calculated, 

a safety factor of 10% is normally added to the total 

refrigeration load to allow for minor omissions and 

inaccuracies (additional safety or reserve may be available 

from the compressor running time and average loading).

Summary of Contents for H-ENGM0408

Page 1: ...ENGM0408 April 2008 Replaces H ENGM0806 August 2006 Engineering Manual Head Pressure Control Valve Oil Separator Compressor Suction Accumulator Suction Filter Evaporator Condenser Liquid Line Solenoi...

Page 2: ...e it the number one choice of convenience store owners everywhere Right source Right parts Right now We are your link to a complete line of dependable and certified commercial refrigeration parts acce...

Page 3: ...s of various liquids and solids 18 16 Banana room refrigeration requirement 19 17 Meat cutting or preparation room 19 18 Rapid load selection for back bars 19 19 Refrigeration requirements for hardeni...

Page 4: ...arated into the following main sources of heat for a given 24 hour period 1 Transmission load 2 Air change load 3 Miscellaneous load 4 Product load Accuracy Accuracy in calculation is the first step i...

Page 5: ...y operated lift trucks are used in refrigerated rooms which represent a heat gain of 8 000 to 15 000 BTU hr or more over the period of operation If motor or loading conditions are not known then calcu...

Page 6: ...simplify the calculation and tabulation of refrigeration loads there are two forms available Bulletin Above32 05 is used for all rooms above 32 F 0 C Bulletin Below32 05 is used for all rooms below 32...

Page 7: ...x BTU lbs 24 hrs Table 8 For consideration of previously loaded product a multiplier of 5 is normally applied to the daily product load Line 4 Divide by No of Operating Hrs 16 to obtain BTUH Cooling R...

Page 8: ...lbs 24 hrs Table 8 b lbs stored x BTU lbs 24 hrs Table 8 For consideration of previously loaded product a multiplier of 5 is normally applied to the daily product load Line 4 Divide by No of Operating...

Page 9: ...e 7 x F Temp Drop For product pulldown time other than 24 hrs figure 24 hr load x 24 Pulldown Time 5 Product Load Respiration a lbs stored x BTU lbs 24 hrs Table 8 b lbs stored x BTU lbs 24 hrs Table...

Page 10: ...al Temp Drop b gallons of ice cream day x BTU gal Table 19 For product pulldown time other than 24 hrs figure 24 hr load x 24 Pulldown Time Divide by No of Operating Hrs 18 to obtain BTUH Cooling Requ...

Page 11: ...ice cream day x BTU gal Table 19 For product pulldown time other than 24 hrs figure 24 hr load x 24 Pulldown Time Divide by No of Operating Hrs 18 to obtain BTUH Cooling Requirement Equipment Selecti...

Page 12: ...Table 7 Product Load Figured 24 hr Pulldown a lbs day x Spec Heat above freezing x F Intial Temp Drop lbs day x Latent Heat Fusion lbs day x Spec Heat below freezing x F Intial Temp Drop b gallons of...

Page 13: ...0 6 Concrete Floor 4 8 5 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 Insulation Inches Heat Load BTU Per 24 Hours Per One Square Foot of Outside Surface Cork Glass Urethane or...

Page 14: ...1 7 0 36 0 41 1 86 2 09 2 17 2 43 2 49 2 79 2 85 3 24 30 1 1 0 24 0 29 0 58 0 66 2 00 2 24 2 26 2 53 2 64 2 94 2 95 3 35 25 3 9 0 41 0 45 0 75 0 83 2 09 2 42 2 44 2 71 2 79 3 16 3 14 3 54 20 6 7 0 56...

Page 15: ...months 8 0 0 50 0 31 53 40 Processed Cheese 40 65 70 12 months 19 0 0 50 0 31 56 40 Butter 40 75 85 1 months 4 to 31 0 50 0 25 23 Cream 35 40 2 3 weeks 31 0 0 66 0 80 0 36 0 42 79 107 Ice Cream 20 to...

Page 16: ...32 90 2 4 weeks 30 3 0 90 0 46 124 33 Pears 29 31 90 95 2 7 months 29 2 0 86 0 45 118 47 Peas Green 32 95 1 3 weeks 30 9 0 79 0 42 106 23 Peppers Sweet 45 50 90 95 2 3 weeks 30 7 0 94 0 47 132 41 Pep...

Page 17: ...0 5 85 11 55 11 00 25 75 Beans Green or Snap 4 60 5 70 16 05 22 05 Beans Lima 1 15 1 60 2 15 3 05 11 00 13 70 Beets Topped 1 35 2 05 3 60 Broccoli 3 75 5 50 8 80 16 90 25 00 Brussels Sprouts 1 65 4 15...

Page 18: ...s 150 0 76 104 35 Sheep 45 0 76 101 33 Hogs 180 0 54 106 35 Table 12 Heat equivalent of Occupancy BTU per HP HR Motor Connected Connected Losses Load Motor Load In Outside Outside HP Refr Space1 Refr...

Page 19: ...87 600 75 85 700 72 81 800 69 78 900 67 75 1000 65 73 1200 62 69 Room Loads based on continuous operation and includes allowance for average number of personnel processing equipment etc with glass pa...

Page 20: ...nd temperature design conditions Design Design Ground Dry Bulb Wet Bulb Temp State City F C F C F C Nebraska Omaha 95 35 78 26 60 16 Nevada Reno 95 35 65 18 65 18 New Hamp Concord 90 32 73 23 55 13 Ne...

Page 21: ...hr to be sure that the unit cooler is large enough to balance properly with the condensing unit Low relative humidity requirements permit higher T D which in turn will allow selection of unit coolers...

Page 22: ...of air for particular applications Derating Factors A Ambient B Altitude C Saturated Suction Temperature S S T D 50 Cycle Power In the selection of refrigeration equipment it should be noted that the...

Page 23: ...l 1 5 safety factor sometimes applied to handle initial high rate of product heat evolution Ice Cream Hardening 10 F Heavy Duty 10 hour pull down with product 30 frozen and a certain percentage over r...

Page 24: ...ere low and normal temperature is being maintained Allow sufficient space between rear of unit cooler and wall to permit free return of air Refer to unit manufacturers catalog for proper space Always...

Page 25: ...0 1 1 8 1 3 8 1 3 8 1 5 8 1 5 8 1 5 8 1 3 8 1 3 8 1 5 8 1 5 8 2 1 8 2 1 8 1 3 8 1 5 8 1 5 8 1 5 8 2 1 8 2 1 8 72 000 1 1 8 1 3 8 1 5 8 1 5 8 1 5 8 2 1 8 1 3 8 1 3 8 1 5 8 1 5 8 2 1 8 2 1 8 1 3 8 1 5 8...

Page 26: ...8 2 1 8 2 1 8 2 5 8 5 8 5 8 7 8 7 8 7 8 7 8 72 000 1 5 8 2 1 8 2 1 8 2 1 8 2 5 8 2 5 8 1 5 8 2 1 8 2 1 8 2 1 8 2 5 8 2 5 8 5 8 5 8 7 8 7 8 7 8 7 8 78 000 1 5 8 2 1 8 2 1 8 2 1 8 2 5 8 2 5 8 1 5 8 2 1...

Page 27: ...1 3 8 1 3 8 1 3 8 1 5 8 1 5 8 1 1 8 1 3 8 1 3 8 1 5 8 1 5 8 1 5 8 1 3 8 1 3 8 1 5 8 78 000 1 1 8 1 1 8 1 3 8 1 3 8 1 3 8 1 5 8 1 1 8 1 3 8 1 3 8 1 3 8 1 5 8 1 5 8 1 1 8 1 3 8 1 5 8 1 5 8 1 5 8 2 1 8...

Page 28: ...1 2 1 2 5 8 5 8 5 8 5 8 66 000 1 5 8 2 1 8 2 1 8 1 3 8 1 3 8 1 5 8 1 5 8 2 1 8 2 1 8 1 3 8 1 5 8 1 5 8 2 1 8 2 1 8 2 1 8 1 2 1 2 5 8 5 8 5 8 5 8 72 000 1 5 8 2 1 8 2 1 8 1 3 8 1 5 8 1 5 8 1 5 8 2 1 8...

Page 29: ...1 1 8 1 3 8 1 3 8 1 5 8 1 5 8 1 5 8 1 1 8 1 3 8 1 5 8 1 5 8 1 5 8 1 5 8 1 3 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 3 8 1 5 8 1 5 8 78 000 1 1 8 1 3 8 1 3 8 1 5 8 1 5 8 2 1 8 1 3 8 1 3 8 1 5 8 1 5 8 1 5 8 2...

Page 30: ...5 8 2 1 8 1 2 1 2 5 8 5 8 5 8 5 8 66 000 1 5 8 1 5 8 2 1 8 1 3 8 1 5 8 1 5 8 1 5 8 1 5 8 2 1 8 1 3 8 1 5 8 1 5 8 1 5 8 1 5 8 2 1 8 1 2 5 8 5 8 5 8 5 8 5 8 72 000 1 5 8 2 1 8 2 1 8 1 5 8 1 5 8 1 5 8 1...

Page 31: ...g Tee Straight Through 1 2 2 3 4 4 5 7 8 10 12 14 16 Table 25 Pressure Loss of Liquid Refrigerants in Liquid Line Risers Expressed in Pressure Drop PSIG and Subcooling Loss F Liquid Line Rise in Feet...

Page 32: ...3 8 7 8 1 1 8 7 8 1 1 8 1 1 8 100 1 5 8 1 1 8 1 3 8 1 1 8 1 3 8 1 3 8 180 000 50 1 5 8 1 1 8 1 3 8 1 1 8 1 3 8 1 3 8 100 1 5 8 1 3 8 1 5 8 1 3 8 1 5 8 1 5 8 240 000 50 1 5 8 1 3 8 1 3 8 1 3 8 1 5 8 1...

Page 33: ...1 3 27 26 39 63 86 1 24 134a 64 2 2 57 14 26 40 61 1 91 1 3 8 22 63 5 3 50 27 42 64 93 1 33 R507 404A 55 0 4 98 40 58 95 1 32 1 87 134a 90 9 3 65 20 37 57 87 1 30 1 5 8 22 90 0 4 96 37 59 90 1 33 1 8...

Page 34: ...6 7 44 111 2 40 0 104 219 2 73 3 164 327 4 26 1 15 5 0 7 2 45 113 0 40 6 105 221 0 73 9 165 329 0 25 6 14 6 8 7 8 46 114 8 41 1 106 222 8 74 4 166 330 8 25 0 13 8 6 8 3 47 116 6 41 7 107 224 6 75 0 16...

Page 35: ...2 F Density of Water 62 4 lbs Cu Ft Specific Heat of Water 1 BTU lb F Latent Heat of 970 BTU lb at 212 F Atm Vaporization 1054 3 BTU lb at 70 F Specific Heat of Ice 0 5 BTU lb F Latent Heat of Fusion...

Page 36: ...ubic Foot of Brick Building 112 120 1 Cubic Foot of Concrete 120 140 1 Cubic Foot of Earth 70 120 at 32 F at 70 F and 29 92 Hg To Convert Measurements From To Multiply By Cubic Feet Cubic Centimeters...

Page 37: ...ng A decrease in dry bulb and sensible heat content represented by a horizontal line directed to the loft along the constant specific humidity line Specific humidity and dew point remain constant 3 Ev...

Page 38: ...ure of 29 921 in HG Atmospheric Pressure at other altitude Altitude Pressure Ft in HG 1000 31 02 500 30 47 0 29 92 500 29 38 1000 28 86 2000 27 82 3000 26 83 4000 25 84 5000 24 90 6000 23 98 7000 23 0...

Page 39: ...39 Appendix Charts Medium Temperature Psychrometric Chart 32 to 130 F Standard Atmospheric Pressure of 29 921 in HG Courtesy of ASHRAE Reproduced by permission...

Page 40: ...antaneous evaporation of refrigerant in a pressure reducing device to cool the refrigerant to the evaporations temperature obtained at the reduces pressure 22 Flooded System system in which only part...

Page 41: ...x8 216 12775 16359 12072 15459 11807 16080 12767 17464 13726 18847 12x20x8 240 13681 17440 12928 16481 12573 17052 13599 18524 14626 19995 12x22x8 264 14549 18474 13749 17458 13299 17974 14392 19541 1...

Page 42: ...o loads to allow for service For product pull down greater than 10 degrees divide pull down temperature by 10 Multiply this number by the BTUH shown on Table A then add to Box Load Floor Approx 65 R H...

Page 43: ...at left of graph Follow it across to the straight line curve Then drop down to total load line at bottom of graph Total load for this example is 224 000 BTUH Select equipment accordingly Material orig...

Page 44: ...serve the right to make changes in specifications without notice CLIMATE CONTROL Commercial Refrigeration Parts The name behind the brands you trust Heatcraft Refrigeration Products LLC 2175 West Park...

Reviews: