background image

Application Note 1829

7

AN1829.0

March 14, 2013

HIP4086 Circuit Description

In the following discussion, xHI, xLI, xHO, xLO, and xHS is a short 
hand notation where the x can be replaced with A, B, or C. An “x” 
pin implies that the reference is applicable to the corresponding 
A, B, or C pins of the driver.

The simplified schematic of Figure 9 illustrates the three power 
stages of the motor driver. Each phase is identical in component 
selection. For specific component values and complete circuit 
details, please refer to the Bill of Materials (BOM) on page 12 
and PCB Layout schematics beginning on page 18.

Series connected gate resistors on each bridge FET are used to 
reduce the switching speed to help minimize EMI radiating from 
the power leads to the motor. The user can change these values 
if desired, keeping in mind that if the gate resistors are made 
larger, the turn off delays of the FETs will also increase, which 
may require additional dead time. 

All of the xHS pins have recommended external snubber circuits 
and negative voltage clamps to ensure that safe operating 
conditions are always maintained over-temperature and loading 
conditions. 

For example, D1 in Figure 9, functions as a negative voltage 
clamp on the AHS pin. Frequently, circuit designers overlook the 
negative transients on the xHS pins that occur when the high-side 
bridge FET turns off. This rapid di/dt transition of the current 
from Q1 to Q2 develops a negative voltage transient as a result 
of the parasitic inductance in the low-side FET power current path 
(see Figure 10).

R1 on the AHS pin is necessary to limit the current in D1 during 
the dead time because without this resistor, D1 is essentially in 
parallel with the body diode of Q1. During the dead-time, the 
commutating negative current in the body diode results with 
approximately a -1.5V conduction voltage (with large amplitude 
motor currents). Because the conduction voltage of D1 (~0.6V) is 
less than the body diode, R1 limits the current that would flow in 

D1 during the dead-time to safe levels. Note that when the 
low-side bridge FET is turned on, the negative voltage across the 
FET is greatly reduced because the conduction voltage of the FET 
channel is typically much less than the conduction voltage of the 
body diode. This results with a negative conduction voltage much 
less than 0.6V and consequently, significant current flows in D1 
only during the dead-time. 

C1 in parallel with D1 in Figure 9 is used to reduce the dv/dt on 
the xHS pin and also filters high frequency oscillations that occur 
on xHS because of parasitic inductance and capacitance on the 
this node. Clean transitions on xHS ensures fail safe operation of 
the HIP4086 driver. 

As an alternative to these capacitors on the xHS pins, the gate 
resistors of the bridge FETs can be made larger to lessen the 
switching speed but at the expense of more switching losses in 
the bridge FETs. 

The HIP4086 has a refresh pulse feature that is used to ensure 
that the boot caps are biased prior to driving on the high-side 
drivers. The refresh pulse occurs only once when bias is applied 
to the driver. The refresh feature of the HIP4086 is not really 
needed when a programmable controller is used but because 
this feature cannot be turned off, C32 is used to ensure noise will 
not be a problem with this pin, which is not only an output pin but 
also an input. 

In this design, the built-in dead time feature of the HIP4086 is 
not used (because the microcontroller has a programmable dead 
time function set to 1µs. A hardware option on the board does 
allow the dead-time function of the HIP4086 to be used if 
desired. It can be used to further increase the 1µs programmed 
dead-time if desired.

FIGURE 9. SIMPLIFIED 3-PHASE BRIDGE

AHO

CLO

BLO

ALO

CHO

BHO

CLI

BLI

ALI

CHI

BHI

AHI

CHS

AHS

BHS

CHB

AHB

BHB

VDD

RDEL

H

IP

408

6/

A

VSS

MO

T

O

R

VDD

V

BAT

CURRENT 

SENSE

RFSH

D1

R1

Q1

Q2

C1

C2

FIGURE 10. NEGATIVE TRANSIENT ON xHS

VSS

xHS

xLO

xHO

INDUCTIVE 

MOTOR LOAD

+

-

+

-

DEAD-TIME

PHASE NODE 

(xHS)

LO GATE DRIVE

HI GATE DRIVE

LO FET CURRENT

HI FET CURRENT

di/dt

~-1.5V

0V

NEG. TRANSIENT 

(-Ldi/dt)

Summary of Contents for HIP4086

Page 1: ...rent sensing on this demo board is used only for pulse by pulse current limiting However an analog signal proportional to the motor current is available on board as a design reference The microcontroller firmware is also provided as a reference but the only support offered by Intersil will be for bug corrections and for adding more switching sequences Please refer to Microchip for details on the u...

Page 2: ...e is open loop and is independent of the bridge voltage Consequently any motor voltage between 15V and 60V can be used with this demo board The microcontroller firmware is provided as a reference but the only support offered by Intersil will be for bug corrections and for adding more switching sequences All firmware revisions for this demo board can be found on the Intersil website The firmware re...

Page 3: ... sink plane 1 Connect the 3 phase motor leads to the MA MB and MC terminal blocks For high current applications it is recommended that both terminals of each block be used It is also recommended that during initial setup the motor not be mechanically loaded 2 Connect the HALL sensor leads of the motor to the HA HB and HC terminals The 5V bias and ground leads must all be connected 3 Rotate the R13...

Page 4: ... is freewheeling to a stop the motor will restart rotating in the opposite direction The RUN LED will be blinking and the REVERSE LED will continue to be on 15 Press again the REVERSE button As before the motor will stop But this time the REVERSE LED will turn off After a pause the motor will restart but this time rotating in the forward direction 16 While the motor is running the motor can be har...

Page 5: ...at motor lead The motor rotation period and the amplitude of the bridge voltage waveforms are modified by the microcontroller to control the speed of the motor Pulse width modulation is used to modify the amplitude of the voltage waveforms and the motor rotation period is established by the shaft position hall sensors that signal the controller to change the switching sequence Typical hall sensor ...

Page 6: ... the flux vector of the permanent magnets The bold dark blue arrow is the magnetic flux vector generated by the active coils for each waveform step The switching step occurs when these two vectors are perpendicular for maximum torque Notice how the flux vectors are rotating counter clockwise 60 for each step This tutorial for BLDC motors is very fundamental For more information about a specific mo...

Page 7: ...n the body diode R1 limits the current that would flow in D1 during the dead time to safe levels Note that when the low side bridge FET is turned on the negative voltage across the FET is greatly reduced because the conduction voltage of the FET channel is typically much less than the conduction voltage of the body diode This results with a negative conduction voltage much less than 0 6V and conse...

Page 8: ... to go low when the motor current 20A Conversely the output of the lower comparator is biased to go low when the motor current is 20A The OR ed outputs of these two comparators is monitored by the microcontroller Pulse by pulse current limiting is provided on each negative transition After 256 consecutive pulse limits all the bridge FETs are permanently turned off and the current limit alarm LED l...

Page 9: ...ive current limit 5A and R38 10kΩ R1 6 155kΩ Equation 5 sets the negative current limit bias voltage For pulse by pulse positive current limit 5A and R39 10kΩ R11B 6 155kΩ In the previous examples both the positive and negative current limit value are equal in absolute values It is acceptable to have different limits for the positive and negative values Selecting the Correct Switching Sequence In ...

Page 10: ...0 010 011 111 101 101 0011 Ametek 119056 000 100 110 111 011 000 100 110 111 011 001 001 Hall sensor logic HC HB HA HC HB HA 010 110 100 101 001 010 110 100 101 001 011 011 HC HB HA 011 111 101 100 000 011 111 101 100 000 010 010 0111 0101 0100 ZLP PLZ PZL ZPL LPZ LZP ZLP PLZ PZL ZPL LPZ LZP Bridge Logic P PWM L Low Z off MB MA MC 001 101 111 110 010 001 101 111 110 010 000 000 HC HB HA 0110 B D D...

Page 11: ... Bridge Logic P PWM L Low Z off Bodine 3304 HC HB HA HC HB HA HC HB HA 0101 0100 MB MA MC HC HB HA 0110 LZP LPZ ZPL PZL PLZ ZLP LZP LPZ ZPL PZL PLZ ZLP Bridge Logic P PWM L Low Z off 100 110 010 011 001 100 110 010 011 001 101 101 111 101 001 000 010 111 101 001 000 010 110 110 110 100 000 001 011 110 100 000 001 011 111 111 101 111 011 010 000 101 111 011 010 000 100 100 MB MA MC HC HB HA HC HB H...

Page 12: ...OTTKY BARRIER RECTIFIER B3S 1002 BRAKE RESET REVERSE START STOP 4 SMD SW_B3S 1002 OMRON Momentary Pushbutton Tactile SMT Switch BAT54A D3 1 COMMON ANODE SOT23 DIODES 30V SCHOTTKY DIODE C0805C106K8PACTU C7 C10 2 10µF 10 10V 805 CAP_0805 KEMET MULTILAYER CAP C1608X7R1C105K C16 C33 C47 3 1µF 10 16V 603 CAP_0603 TDK MULTILAYER CAP C1608X7R1H104K C15 1 0 1µF 10 50V 603 CAP_0603 TDK MULTILAYER CAP C3225...

Page 13: ...R19 R26 R27 R36 R37 R40 6 33 5 1 16W 603 RES_0603 GENERIC Thick Film Chip Resistor H2511 00R00 1 16W RJ1 1 0 0 1 16W 603 RES_0603 GENERIC Thick Film Chip Resistor H2511 00R00 1 16W1 R42 RJ4 RJ10 RJ11 4 0 1 1 16W 603 RES_0603 GENERIC Thick Film Chip Resistor H2511 01000 1 16W1 R46 1 100 1 1 16W 603 RES_0603 GENERIC Thick Film Chip Resistor H2511 01001 1 16W1 R47 R49 R51 R58 R60 7 1kΩ 1 1 16W 603 RE...

Page 14: ...4086ABZ U5 1 SOIC SOIC24_300_50 INTERSIL Three Phasre Driver 80v 0 5A IRFS4710 Q1 Q6 6 D2PAK D2PAK IR N Channel 100V 75A HEXFET Power MOSFET ISL28246FUZ U2 U3 2 MSOP MSOP8_118_256 LINEAR DUAL RAIL TO RAIL OUTPUT AMPLIFIER Pb Free ISL6719ARZ U6 1 DFN DFN9_118X118_19 7_EP INTERSIL 100V Linear Regulator ISL8560IRZ U1 1 20QFN QFN20_236X236_3 15_EP INTERSIL 2A DC DC POWER SWITCHING REGULATOR PIC18F2431...

Page 15: ...UF 10UF V_5V 330UF 330UF 0 DNP 0 1UF 0 1UF 1UF 20K 390PF 100PF 50V 5 62K 1UF 0 1UF 50V 50V 16V OPEN 2 1 2 1 2 1 1 2 EP AUXIN COMPB ENABLE COMPA VSW_FB VSW ENABLE_N GND VPWR OUT IN OUT 17 20 19 18 16 R42 C24 EP VCC5 EN BOOT LX REF PGOOD PGND SS LX LX C8 C9 C16 R50 R51 C26 C5 C17 C48 C47 D1 C10 C7 C25 R8 R10 R9 R52 C51 C15 C11 C1 C2 VIN VIN RTCT SYNC SGND FB COMP VIN LX VIN 8 2 10 10 9 8 7 6 5 4 3 1...

Page 16: ...WM0 PWM1 PWM2 PWM3 PWM5 PWM4 MCLR 2 1 1 1 3 1 2 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 1 8 7 6 5 4 3 2 1 4 3 2 1 2 1 4 3 2 1 4 3 2 2 1 3 1 4 OUT IN OUT OUT OUT IN IN IN IN IN IN OUT OUT OUT OUT OUT OUT OUT 3 3 1 2 2 3 1 2 1 2 1 6 5 1 2 3 4 C30 TB2 TB3 R28 RJ1 TB1 R60 R30 R29 Y1 J2 RC2 RC1 RC0 OSC2 OSC1 AVDD RA4 RA3 RA2 RA1 RC6 VDD VSS RB0 RB1 RB5 RC7 RB3 RB4 RB2 AVSS RC3 RA0 MCLR RC4 RC5 RB7 RB6 C6 R32 SW1...

Page 17: ... 32 4K 20K MC MA 10K MC PWM4 4 7 BLO 4 7 BLO CHO MA 1UF MB 1UF 470UF 20K 33 33 AHO ALO 33 33 33 32 4K V_48V BHO 1UF 470PF DNP 1K 50V DNP FLTA V_5V PWM1 1 2 1 2 1 2 1 1 1 1 1 1 2 2 2 3 3 2 3 3 2 3 2 3 2 1 1 2 1 2 1 2 1 2 1 2 1 1 2 2 OUT V V OUT V V IN IN OUT IN IN IN IN IN OUT IN IN OUT IN IN IN IN IN IN OUT OUT OUT OUT OUT 2 4 5 4 3 2 1 3 7 6 8 1 3 7 6 5 8 1 2 1 2 U2 R14 R18 RJ3 TB5 R22 R21 R17 R1...

Page 18: ... D1 C51 R52 C1 C2 R9 R10 R50 R51 C5 R8 C36 D6 R58 RJ1 R13 J2 BRAKE RJ11 C11 C16 U1 C14 C15 U6 C17 RJ10 R40 D9 C35 C37 D7 C33 R48 R27 D10 R59 R49 C50 R17 R11 LED2 LED3 U3 LED0 LED1 R39 D8 REVERSE C26 R7 C24 R6 C48 C23 R37 D5 R2 R19 R26 D11 R57 R36 R56 C3 C49 R21 R14 R46 R12B R12 C40 R12A D3 C41 R11B R61 D4 R55 BLDC MOTOR DRIVE R53 R15 R18 R22 C38 U2 R54 R3 R1 R4 R62 R38 C31 D2 START STOP C34 R24 R2...

Page 19: ... R16 R31 D1 C51 R52 C1 C2 R9 R10 R50 R51 C5 R8 C36 D6 R58 RJ1 R13 J2 BRAKE RJ11 C11 C16 U1 C14 C15 U6 C17 RJ10 R40 D9 C35 C37 D7 C33 R48 R27 D10 R59 R49 C50 R17 R11 LED2 LED3 U3 LED0 LED1 R39 D8 REVERSE C26 R7 C24 R6 C48 C23 R37 D5 R2 R19 R26 D11 R57 R36 R56 C3 C49 R21 R14 R46 R12B R12 C40 R12A D3 C41 R11B R61 D4 R55 BLDC MOTOR DRIVE R53 R15 R18 R22 C38 U2 R54 R3 R1 R4 R62 R38 C31 D2 START STOP C3...

Page 20: ...Application Note 1829 20 AN1829 0 March 14 2013 FIGURE 21 TOP LAYER REV A PCB Layout Continued ...

Page 21: ...Application Note 1829 21 AN1829 0 March 14 2013 FIGURE 22 LAYER 2 REV A PCB Layout Continued ...

Page 22: ...Application Note 1829 22 AN1829 0 March 14 2013 FIGURE 23 LAYER 3 REV A PCB Layout Continued ...

Page 23: ...Application Note 1829 23 AN1829 0 March 14 2013 FIGURE 24 BOTTOM LAYER REV A PCB Layout Continued ...

Page 24: ...are see Figure 25 Figure 26 shows other examples of faulty setup or failed test results Push button Test 1 Press the START STOP button All four LEDs should turn on 2 Press again the START STOP button Led0 should turn off 3 Press the REVERSE button Led1 should turn off 4 Press the BRAKE button Led2 should turn off 5 Press again the BRAKE button Led3 should turn off At this point all four LEDs are o...

Page 25: ... input is grounded observe the following waveforms on the MA MB and MC terminals As the example in Figure 27 shows there should be no switching disturbances on MB and MA 3 While the HC input is grounded observe that the lab supply current is 45mA Dip Switch Test 1 Move each dip switch one at a time starting with position 1 to the off position 2 Observe that led0 led1 led2 and led3 turn off one at ...

Page 26: ...Mouser Electronics Authorized Distributor Click to View Pricing Inventory Delivery Lifecycle Information Intersil HIP4086DEMO1Z ...

Reviews: