background image

2

dc2091afa

DEMO MANUAL DC2091A

notes on test equipMent anD setup

• 

Use  high  performance  signal  generators  with  fully 

configurable differential I and Q outputs, such as the 

Rohde & Schwarz SMJ100A vector signal generator or 

equivalent.

• 

Use narrow resolution bandwidth (RBW) and engage 

video averaging on the spectrum analyzer to lower the 

displayed average noise level (DANL) in order to improve 

sensitivity and to increase dynamic range. The trade-off 

is increased sweep time.

• 

Spectrum analyzers can produce significant internal dis-

tortion products if they are overdriven. Generally, spectrum 

analyzers are designed to operate at their best with about 

–30dBm to –40dBm at their input filter or preselector. 

Sufficient spectrum analyzer input attenuation should be 

used to avoid saturating the instrument, but too much 

attenuation reduces sensitivity and dynamic range.

• 

Before taking measurements, the system performance 

should be evaluated to ensure that: 
1)  clean input signals can be produced
2)  the spectrum analyzer’s internal distortion is mini-

mized

3)  the spectrum analyzer has enough dynamic range 

and sensitivity

4)  the system is accurately calibrated for power and 

frequency.

• 

Digital modulation often requires DC coupling and flat 

frequency response. For best EVM performance with 

complex modulation, the RC networks at the baseband 

I/Q inputs are not required. 

quick start proceDure

1.  Remove the demonstration circuit from its protective 

packaging in an ESD-safe working area.

2.  Turn off the DC power supply as well as the baseband 

and LO signal sources’ outputs.

3.  Connect all test equipment as show in Figure 1.
4.  Make sure jumper JP1 is installed and the jumper JP2 

is installed at the 1-2 position.

5.  Slowly increase the supply voltage to 3.3V. Do not 

exceed 3.8V.

6.  Turn on the baseband signal source. Set the baseband 

common mode bias to 1.4V.

7.  Verify the total V

CC

 supply current is approximately 

28mA. The demonstration circuit is now turned on 

and is ready for measurements.

8.  Turn  on  the  output  of  the  LO  source  and  apply  a 

492.8MHz, 0dBm CW Signal.

9.  Set the baseband signal source to provide a 100kHz, 

200mV

P-P(DIFF)

 baseband input signal. The I and Q 

channels  should  be 90° shifted  and  set  for  lower 

sideband selection.

10. Measure the modulator’s RF output on the Spectrum 

Analyzer at 492.7MHz.

absolute MaxiMuM input ratings

Supply Voltage .........................................................3.8V

Common Mode Level of BBPI, BBMI, 

and BBPQ, BBMQ ...................................................2V

LOL, LOC DC Voltage ............................................. ±0.1V

LOL, LOC Input Power .........................................20dBm

Voltage on Any Pin ...........................–0.3V to V

CC

 + 0.3V

T

JMAX

 .................................................................... 150°C

Case Operating Temperature Range ....... –40°C to 105°C

Storage Temperature Range .................. –65°C to 150°C

CAUTION: ThIS PART IS SeNSITIve TO eleCTRO-

STATIC DISChARge (eSD). ObSeRve PROPeR eSD 

PReCAUTIONS wheN hANDlINg The lTC5599.

Summary of Contents for LTC5599

Page 1: ... 1300MHz range The SPI interface controls the supply current modulator L LT LTC LTM Linear Technology and the Linear logo are registered trademarks and QuikEval is a trademark of Linear Technology Corporation All other trademarks are the property of their respective owners gain andallowsoptimizationoftheLOcarrierfeedthrough and side band suppression Design files for this circuit board are availabl...

Page 2: ...performance with complex modulation the RC networks at the baseband I Q inputs are not required Quick Start Procedure 1 Remove the demonstration circuit from its protective packaging in an ESD safe working area 2 Turn off the DC power supply as well as the baseband and LO signal sources outputs 3 Connect all test equipment as show in Figure 1 4 Make sure jumper JP1 is installed and the jumper JP2 ...

Page 3: ...µF R10 49 9Ω C8 0 1µF R11 49 9Ω C9 0 1µF REMOVE THE RC NETWORK FOR BEST EVM WITH COMPLEX DIGITAL MODULATION Figure 2 Low Power I Q Modulator Schematic Quick Start Procedure 11 Calculate the Voltage Conversion Gain Gain 20 log VRF OUT 50Ω VIN DIFF I OR Q 12 MeasuretheOutput1dBCompressionPointbyincreas ing the input signal level until the Voltage Conversion Gain degrades by 1dB 13 Measure the Image ...

Page 4: ... HD 2X7 0 79 1 2 6 4 7 5 10 9 11 12 14 A0 A1 A2 VSS VCC WP SCL SDA U2 24LC025 1 2 3 4 8 7 6 5 VCC_B DIR VCC_A GND U4 74LVC1T45GW 6 5 4 1 2 3 C18 2 2pF R20 100Ω R19 1k C15 0 1µF C16 0 1µF C17 0 1µF C14 0 1µF VCC VCC_L VCC_L VCC_L GND U3 NC7WZ17P6X 6 4 5 1 3 2 C13 2 2pF R26 1k C11 0 1µF VCC VCC_L GND U5 NC7WZ17P6X 6 4 5 1 3 2 C12 2 2pF C10 2 2pF R25 1k R23 1k R22 200k SDO SDI SCLK CS VCC_L VCC VCC_L...

Page 5: ...80 00 00 07 0 9 1 FB1 FERRITE BEAD 33Ω 100MHz TDK MPZ1608S331AT 10 1 JP1 HEADER 2 PIN 0 079 SINGLE ROW SULLINS NRPN021PAEN RC 11 1 JP2 HEADER 3 PIN 0 079 SINGLE ROW SULLINS NRPN031PAEN RC 12 2 XJP4 XJP5 SHUNT 2mm Ctrs SAMTEC 2SN BK G 13 6 J1 J6 CONN SMA 50Ω EDGE LANCH E F JOHNSON 142 0701 851 14 1 L1 IND 39nH 0402HP COILCRAFT 0402HP 39NXJLU 15 1 P1 HEADER 2X7PIN 0 079CC MOLEX 87831 1420 16 1 R1 RE...

Page 6: ...NCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE EXCEPT TO THE EXTENT OF THIS INDEMNITY NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT SPECIAL INCIDENTAL OR CONSEQUENTIAL DAMAGES The user assumes all responsibility and liability for proper and safe handling of the goods Further the user releases LTC from all claims arising from the handling or use of the ...

Reviews: