MFJ-993 IntelliTuner Automatic Antenna Tuner
Instruction Manual
©
2003-2004 MFJ Enterprises, Inc.
19
work (especially if they are connected together with multiple wires), but the best RF grounds are radial
systems or multi-wire counterpoises. Radials and counterpoises provide large, low resistance surfaces for
RF energy.
RF and lightning travel on the surface of conductors. Braided or woven conductors have high surface
resistance to lightning and RF. Ground leads for RF and lightning should have wide smooth surfaces.
Avoid the use of woven or braided conductors in RF and lightning grounds unless the lead needs to be
flexible.
Antenna System Hints
Location
For the best performance, an end-fed longwire wire antenna should be at least one quarter-wavelength
long at the operating frequency. Horizontal dipole antennas should be at least a half-wavelength long and
located as high and clear as possible. While good RF grounds help the signal in almost any transmitting
installation, it is extremely important to have good RF grounds with long wire or other Marconi-style
antennas.
Matching Problems
Most matching problems occur when the antenna system presents an extremely high impedance to the
tuner. When the antenna impedance is much lower than the feedline impedance, an
odd quarter-
wavelength
feedline converts the low antenna impedance to a very high impedance at the tuner. A similar
problem occurs if the antenna has an extremely high impedance and the transmission line is a multiple of
a half-wavelength. The half-wavelength line
repeats
the very high antenna impedance at the tuner.
Incorrect feedline and antenna lengths can make an otherwise perfect antenna system very difficult or
impossible to tune.
One example where this problem occurs is on 80 meters when an odd quarter-wave (60 to 70 feet) open
wire line is used to feed a half-wave (100 to 140 feet) dipole. The odd quarter-wave line transforms the
dipole's low impedance to over three thousand ohms at the tuner. This is because the mismatched
feedline is an
odd multiple
of 1/4 wavelength long. The line
inverts
(or teeter-totters) the antenna
impedance.
A problem also occurs on 40 meters with this same antenna example. The feedline is now a multiple of a
half-wave (60 to 70 feet) and connects to a full-wave high impedance antenna (100 to 140 feet). The half-
wave line repeats the high antenna impedance at the tuner. The antenna system looks like several
thousand ohms at the tuner on 40 meters.
This places enormous strain on the balun and the insulation in the tuner, since voltages can reach several
thousand volts. This can cause component arcing and heating.
The following suggestions will reduce the difficulty in matching an antenna with a tuner:
•
Never center feed a half-wave multi-band antenna with a high impedance feedline that is close to an
odd multiple of a quarter-wave long.
•
Never center feed a full-wave antenna with a feedline close to a multiple of a half-wave long.
•
If this tuner will not "tune" a multi-band antenna, add or subtract 1/8 wave of feedline (for the band
that won't tune) and try again.
Summary of Contents for MFJ-993
Page 2: ......