DSP56309 Overview
DSP56309 Architecture Overview
MOTOROLA
DSP56309UM/D 1-17
additional logic to peripherals that use TTL-level signals. With a small amount of
additional logic, the SCI can connect to peripheral interfaces that have non-TTL level
signals, such as the RS-232C, RS-422, etc.
This interface uses three dedicated signals: transmit data (TXD), receive data (RXD), and
SCI serial clock (SCLK). It supports industry-standard asynchronous bit rates and
protocols, as well as high-speed synchronous data transmission
(
up to 8.25 Mbps for a
66 MHz clock). The asynchronous protocols supported by the SCI include a multidrop
mode for master/slave operation with wakeup on idle line and wakeup on address bit
capability. This mode allows the DSP56309 to share a single serial line efficiently with
other peripherals.
The SCI consists of separate transmit and receive sections that can operate
asynchronously with respect to each other. A programmable baud-rate generator
provides the transmit and receive clocks. An enable vector and an interrupt vector have
been included so that the baud-rate generator can function as a general purpose timer
when it is not being used by the SCI or when the interrupt timing is the same as that
used by the SCI.
1.10.5
Timer Module
The triple timer module is composed of a common 21-bit prescaler and three
independent and identical general-purpose 24-bit timer/event counters, each with its
own memory-mapped register set.
Each timer has a single signal that can function as a GPIO signal or as a timer signal.
Each timer can use internal or external clocking and can interrupt the DSP after a
specified number of events (clocks) or can signal an external device after counting
internal events. Each timer connects to the external world through one bidirectional
signal. When this signal is configured as an input, the timer can function as an external
event counter or measures external pulse width/signal period. When the signal is used
as an output, the timer can function as either a timer, a watchdog, or a Pulse Width
Modulator (PWM).
Summary of Contents for DSP56309
Page 25: ...xxii DSP56309UM D MOTOROLA Figure D 25 Port E Registers PCRE PRRE PDRE D 39 ...
Page 30: ...MOTOROLA DSP56309UM D 1 1 SECTION 1 DSP56309 OVERVIEW ...
Page 47: ...1 18 DSP56309UM D MOTOROLA DSP56309 Overview DSP56309 Architecture Overview ...
Page 48: ...MOTOROLA DSP56309UM D 2 1 SECTION 2 SIGNAL CONNECTION DESCRIPTIONS ...
Page 85: ...2 38 DSP56309UM D MOTOROLA Signal Connection Descriptions OnCE JTAG Interface ...
Page 86: ...MOTOROLA DSP56309UM D 3 1 SECTION 3 MEMORY CONFIGURATION ...
Page 104: ...MOTOROLA DSP56309UM D 4 1 SECTION 4 CORE CONFIGURATION ...
Page 124: ...MOTOROLA DSP56309UM D 5 1 SECTION 5 GENERAL PURPOSE I O ...
Page 125: ...5 2 DSP56309UM D MOTOROLA General Purpose I O 5 1 INTRODUCTION 5 3 5 2 PROGRAMMING MODEL 5 3 ...
Page 128: ...MOTOROLA DSP56309UM D 6 1 SECTION 6 HOST INTERFACE HI08 ...
Page 166: ...MOTOROLA DSP56309UM D 7 1 SECTION 7 ENHANCED SYNCHRONOUS SERIAL INTERFACE ESSI ...
Page 212: ...MOTOROLA DSP56309UM D 8 1 SECTION 8 SERIAL COMMUNICATION INTERFACE SCI ...
Page 241: ...8 30 DSP56309UM D MOTOROLA Serial Communication Interface SCI GPIO Signals and Registers ...
Page 242: ...MOTOROLA DSP56309UM D 9 1 SECTION 9 TRIPLE TIMER MODULE ...
Page 269: ...9 28 DSP56309UM D MOTOROLA Triple Timer Module Timer Operational Modes ...
Page 270: ...MOTOROLA DSP56309UM D 10 1 SECTION 10 ON CHIP EMULATION MODULE ...
Page 302: ...MOTOROLA DSP56309UM D 11 1 SECTION 11 JTAG PORT ...
Page 369: ...C 22 DSP56309UM D MOTOROLA DSP56309 BSDL Listing ...
Page 370: ...MOTOROLA DSP56309UM D D 1 APPENDIX D PROGRAMMING REFERENCE ...
Page 405: ......
Page 409: ......