Serial Peripheral Interface Module (SPI)
Error Conditions
MC68HC908GP32
•
MC68HC08GP32
—
Rev. 6
Technical Data
MOTOROLA
Serial Peripheral Interface Module (SPI)
319
MODF generates a receiver/error CPU interrupt request if the error
interrupt enable bit (ERRIE) is also set. The SPRF, MODF, and OVRF
interrupts share the same CPU interrupt vector.
(See
Figure 20-11
.) It is
not possible to enable MODF or OVRF individually to generate a
receiver/error CPU interrupt request. However, leaving MODFEN low
prevents MODF from being set.
In a master SPI with the mode fault enable bit (MODFEN) set, the mode
fault flag (MODF) is set if SS goes to logic 0. A mode fault in a master
SPI causes the following events to occur:
•
If ERRIE = 1, the SPI generates an SPI receiver/error CPU
interrupt request.
•
The SPE bit is cleared.
•
The SPTE bit is set.
•
The SPI state counter is cleared.
•
The data direction register of the shared I/O port regains control of
port drivers.
NOTE:
To prevent bus contention with another master SPI after a mode fault
error, clear all SPI bits of the data direction register of the shared I/O port
before enabling the SPI.
When configured as a slave (SPMSTR = 0), the MODF flag is set if SS
goes high during a transmission. When CPHA = 0, a transmission begins
when SS goes low and ends once the incoming SPSCK goes back to its
idle level following the shift of the eighth data bit. When CPHA = 1, the
transmission begins when the SPSCK leaves its idle level and SS is
already low. The transmission continues until the SPSCK returns to its
idle level following the shift of the last data bit.
(See
20.6 Transmission
Formats
.)
NOTE:
Setting the MODF flag does not clear the SPMSTR bit. The SPMSTR bit
has no function when SPE = 0. Reading SPMSTR when MODF = 1
shows the difference between a MODF occurring when the SPI is a
master and when it is a slave.
When CPHA = 0, a MODF occurs if a slave is selected (SS is at logic 0)
and later unselected (SS is at logic 1) even if no SPSCK is sent to that
F
re
e
sc
a
le
S
e
m
ic
o
n
d
u
c
to
r,
I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
n
c
.
..