background image

4-2.Flow Soldering

1. When sudden heat is applied to the components, the

[Standard Conditions for Flow Soldering]

   mechanical strength of the components will decrease
   because a sudden temperature change causes
   deformation inside the components. In order to prevent
   mechanical damage in the components, preheating should
   be required for both of the components and the PCB board.
   Preheating conditions are shown in table 2. It is required to
   keep temperature differential between the solder and
   the components surface (ΔT) as small as possible.

2. Excessively long soldering time or high soldering
   temperature can result in leaching of the outer electrodes,
   causing poor adhesion or a reduction in capacitance value
   due to loss of contact between electrodes and end termination.
 

[Allowable Soldering Temperature and Time]

3. When components are immersed in solvent after mounting,
   be sure to maintain the temperature difference (ΔT)
   between the component and solvent within the range
   shown in the table 2.
4. Do not apply flow soldering to chips not listed in Table 2.

Table 2

In case of repeated soldering, the accumulated

soldering time must be within the range shown above.

Recommended Conditions

Pb-Sn Solder

Lead Free Solder

90

110

100

120

240

250

250

260

Air

N

2

Pb-Sn Solder: Sn-37Pb

Lead Free Solder: Sn-3.0Ag-0.5Cu

5. Optimum Solder Amount for Flow Soldering

 5-1. The top of the solder fillet should be lower than the
        thickness of components. If the solder amount is
        excessive, the risk of cracking is higher during
        board bending or any other stressful condition.

       in section

Caution

Preheating Peak Temperature

Soldering Peak Temperature

Atmosphere

Part Number

GC

18/21/31

Temperature Differential

ΔT

150

Up to Chip Thickness

Adhesive

!

Temperature(℃)

Soldering Peak
Temperature

Preheating  Peak

Soldering

Gradual
Cooling

Preheating

△T

30-90 seconds

5 seconds max.

Time

280

270

260

240

230

220

250

So

ld

er

ing 

T

em

per

at

ur

e(

℃)

0

30

60

90

120

Soldering Time(sec.)

JEMCGC-2702N

18

Summary of Contents for GCM21BC71E475KE36 Series

Page 1: ...emp Range Ref Temp 8 Packaging Temp coeff or Cap Change This product specification is applied to Chip Monolithic Ceramic Capacitor used for Automotive Electronic equipment 2 T 1 25 0 2 55 to 125 C 22 to 22 55 to 125 C 25 C 6 Capacitance Tolerance 4 7 uF Specifications and Test Methods Operating Temp Range 10 3 Temperature Characteristics Public STD Code X7S EIA g 0 2 to 0 7 5 Nominal Capacitance L...

Page 2: ...e following table treatment shown below 10 consecutive times Appearance No marking defects Set for 24 2 hours at room temperature then measure Capacitance C7 Within 10 Change Dissipation C7 0 2max Factor Insulation 50Ω F min Resistance Measurement after test for high dielectric constant type Perform a heat treatment at 150 0 10 C for one hour and then let sit for 24 2 hours at room temperature the...

Page 3: ...pacitance Within the specified tolerance perpendicular axes of the test specimen 18 shocks Change The specified test pulse should be Half sine and should have a Dissipation C7 0 1max duration 0 5ms peak value 1500g and velocity change 4 7m s Factor Insulation 50Ω F min Resistance 12 Vibration Appearance No defects or abnormalities Solder the capacitor to the test jig glass epoxy board in the same ...

Page 4: ...IS K 8101 and rosin JIS K 5902 25 rosin in weight propotion Immerse in eutectic solder solution for 5 0 0 5 seconds at 235 5 c Should be placed into steam aging for 8 hours 15 minutes After preheating immerse the capacitor in a solution of ethanol JIS K 8101 and rosin JIS K 5902 25 rosin in weight propotion Immerse in eutectic solder solution for 120 5 seconds at 260 5 17 Electrical Appearance No ...

Page 5: ...15 Insulation 50Ω F min Resistance in mm 20 Beam Load Test Destruction value should be exceed following one Place the capacitor in the beam load fixture as Fig 4 Chip L dimension 2 5mm max Apply a force Chip Length 2 5mm max Chip L dimension 3 2mm max Chip Length 3 2mm min Speed supplied the Stress Load 0 5mm sec Chip thickness 1 25mm rank 54 5N Chip thickness 0 5mm rank 20N Chip thickness 0 5mm r...

Page 6: ... the table should be within the specified ranges Initial measurement for high dielectric constant type Perform a heat treatment at 150 0 10 for one hour and then set for 24 2 hours at room temperature Perform the initial measurement Measurement Voltage GCM21B C7 1E 475 only 0 5Vrms AEC Q200 Murata Standard Specification and Test Methods No AEC Q200 Test Item AEC Q200 Test Method Specification Step...

Page 7: ...000 4000 M 1000 5000 GC 43 N R 1000 4000 E 500 2000 M 1000 5000 N R 1000 4000 1 2 Dimensions of Tape 1 GC 03 15 W8P2 CODE D E J F in mm 2 GC 03 15 W8P1 CODE W in mm Code GC 03 GC 15 A 0 37 0 65 B 0 67 1 15 Nominal value t 0 5 max 0 8 max GC 15 Package GC Type GC 55 Paper Tape Type GC 32 GC 31 GC 21 1 2 2 0 0 05 φ A 1 2 2 0 0 B 4 0 0 1 1 φ1 5 0 1 0 1 75 0 1 8 0 0 3 3 5 0 05 A B t 2 0 05 max 1 0 0 0...

Page 8: ...1 φ1 5 0 1 0 1 75 0 1 8 0 0 3 3 5 0 05 1 1 max A B 8 0 0 3 4 0 0 1 3 5 0 05 1 75 0 1 A B 2 0 0 1 φ1 5 0 1 0 1 7 max T 1 25mm 2 5 max T 1 35 1 6mm 3 0 max T 1 8 2 0mm 3 7 max T 2 5mm 4 0 0 1 0 25 0 1 T 2 0mm 0 3 0 1 T 2 5mm φ1 5 0 1 0 4 0 0 1 8 0 0 1 φ1 5 0 2 0 12 0 0 3 5 5 0 1 1 75 0 1 A 1 2 5 max T 1 8mm B 1 2 0 0 1 0 3 0 1 Code GC 21 Dimensions Tolerance 0 15 GC 21 Dimensions Tolerance 0 2 GC 31...

Page 9: ...r Chip As specified in 1 2 Base Tape As specified in 1 2 Bottom Tape Thickness 0 05 Only a bottom tape existence W w1 GC 32 max 16 5 max 10 1 5 GC 43 55 20 5 max 14 1 5 φ180 0 3 0 φ330 2 0 φ50 min φ13 0 5 2 0 0 5 Chip in mm Fig 1 Package Chips Fig 2 Dimensions of Reel Fig 3 Taping Diagram JEMCGP 01894D 9 ...

Page 10: ... no fuzz in the cavity 1 10 Break down force of top tape 5N min Break down force of bottom tape 5N min Only a bottom tape existence 1 11 Reel is made by resin and appeaser and dimension is shown in Fig 2 There are possibly to change the material and dimension due to some impairment 1 12 Peeling off force 0 1N to 0 6N in the direction as shown below GC 03 0 05N 0 5N 1 13 Label that show the custome...

Page 11: ...the following conditions Temperature of 5 to 40 and a Relative Humidity of 20 to 70 1 Sunlight dust rapid temperature changes corrosive gas atmosphere or high temperature and humidity conditions during storage may affect the solderability and the packaging performance Please use product within six months of receipt 2 Please confirm solderability before using after six months Store the capacitors w...

Page 12: ...citors using your actual appliances at the intended environment and operating conditions Typical temperature characteristics Char R6 X5R Typical temperature characteristics Char R7 X7R Typical temperature characteristics Char F5 Y5V 2 Measurement of Capacitance 1 Measure capacitance with the voltage and the frequency specified in the product specifications 1 1 The output voltage of the measuring e...

Page 13: ... Pulse voltage E Maximum possible applied voltage 1 2 Influence of overvoltage Overvoltage that is applied to the capacitor may result in an electrical short circuit caused by the breakdown of the internal dielectric layers The time duration until breakdown depends on the applied voltage and the ambient temperature 4 Applied Voltage and Self heating Temperature 1 When the capacitor is used in a hi...

Page 14: ...s such as their aging voltage and temperature characteristics And check capacitors using your actual appliances at the intended environment and operating conditions 2 The capacitance values of high dielectric constant type capacitors change depending on the AC voltage applied Please consider the AC voltage characteristics when selecting a capacitor to be used in a AC circuit AC voltage characteris...

Page 15: ...are piled up or handled the corners of another printed circuit board should not be allowed to hit the capacitor in order to avoid a crack or other damage to the capacitor Soldering and Mounting 1 Mounting Position 1 Confirm the best mounting position and direction that minimizes the stress imposed on the capacitor during flexing or bending the printed circuit board 1 1 Choose a mounting position t...

Page 16: ...essive forces are not applied to the capacitors 1 1 In mounting the capacitors on the printed circuit board any bending force against them shall be kept to a minimum to prevent them from any bending damage or cracking Please take into account the following precautions and recommendations for use in your process 1 Adjust the lowest position of the pickup nozzle so as not to bend the printed circuit...

Page 17: ...nditions Infrared Reflow Vapor Reflow Peak Temperature 230 250 230 240 240 260 Atmosphere Air Air Air or N2 Pb Sn Solder Sn 37Pb Lead Free Solder Sn 3 0Ag 0 5Cu In case of repeated soldering the accumulated soldering time must be within the range shown above 4 Optimum Solder Amount for Reflow Soldering 4 1 Overly thick application of solder paste results in a excessive solder fillet height This ma...

Page 18: ...e to maintain the temperature difference ΔT between the component and solvent within the range shown in the table 2 4 Do not apply flow soldering to chips not listed in Table 2 Table 2 In case of repeated soldering the accumulated soldering time must be within the range shown above Recommended Conditions Pb Sn Solder Lead Free Solder 90 110 100 120 240 250 250 260 Air N2 Pb Sn Solder Sn 37Pb Lead ...

Page 19: ... 37Pb Lead Free Solder Sn 3 0Ag 0 5Cu 4 Optimum Solder amount when re working with a Soldering lron 4 1 In case of sizes smaller than 0603 GC 03 15 18 the top of the solder fillet should be lower than 2 3 s of the thickness of the component or 0 5mm whichever is smaller In case of 0805 and larger sizes GC 21 31 32 the top of the solder fillet should be lower than 2 3 s of the thickness of the comp...

Page 20: ...ormance of a capacitor after mounting on the printed circuit board 1 1 Avoid bending printed circuit board by the pressure of a test pin etc The thrusting force of the test probe can flex the PCB resulting in cracked chips or open solder joints Provide support pins on the back side of the PCB to prevent warping or flexing 1 2 Avoid vibration of the board by shock when a test pin contacts a printed...

Page 21: ...jig and from the front side of board as below the capacitor may form a crack caused by the tensile stress applied to capacitor Outline of jig 2 Example of a suitable machine An outline of a printed circuit board cropping machine is shown as follows Along the lines with the V grooves on printed circuit board the top and bottom blades are aligned to one another when cropping the board The misalignme...

Page 22: ...at can cause condensation 2 Others 2 1 In an Emergency 1 If the equipment should generate smoke fire or smell immediately turn off or unplug the equipment If the equipment is not turned off or unplugged the hazards may be worsened by supplying continuous power 2 In this type of situation do not allow face and hands to come in contact with the capacitor or burns may be caused by the capacitors high...

Page 23: ... capacitors 1 1 The capacitor when used in the above unsuitable operating environments may deteriorate due to the corrosion of the terminations and the penetration of moisture into the capacitor 1 2 The same phenomenon as the above may occur when the electrodes or terminals of the capacitor are subject to moisture condensation 1 3 The deterioration of characteristics and insulation resistance due ...

Page 24: ...s and dimensions into consideration to eliminate the possibility of excess solder fillet height 1 2 It is possible for the chip to crack by the expansion and shrinkage of a metal board Please contact us if you want to use our ceramic capacitors on a metal board such as Aluminum Pattern Forms Lateral Mounting Prohibited Correct Notice Placing Close to Chassis Placing of Chip Components and Leaded C...

Page 25: ...ow Soldering Method Dimensions Part Number GC 31 3 2 1 6 2 2 2 6 1 0 1 1 1 0 1 4 in mm Table 2 Reflow Soldering Method Dimensions Part Number GC 31 3 2 1 6 2 2 2 4 0 8 0 9 1 0 1 4 GC 32 3 2 2 5 2 0 2 4 1 0 1 2 1 8 2 3 in mm 2 0 1 25 1 0 1 2 0 6 0 7 0 8 1 1 1 0 0 5 0 3 0 5 0 35 0 45 0 4 0 6 1 6 0 8 0 6 0 8 0 6 0 7 0 6 0 8 a b c 0 8 0 9 GC 21 1 6 0 8 0 6 1 0 Notice a b Chip L W GC 03 c 0 6 0 3 0 2 0...

Page 26: ...trol curing temperature and time in order to prevent insufficient hardening 4 Flux Application 1 An excessive amount of flux generates a large quantity of flux gas which can cause a deterioration of Solderability So apply flux thinly and evenly throughout A foaming system is generally used for flow soldering 2 Flux containing too a high percentage of halide may cause corrosion of the outer electro...

Page 27: ...an under coating to buffer against the stress 2 Select a resin that is less hygroscopic Using hygroscopic resins under high humidity conditions may cause the deterioration of the insulation resistance of a capacitor An epoxy resin can be used as a less hygroscopic resin Others 1 Transportation 1 The performance of a capacitor may be affected by the conditions during transportation 1 1 The capacito...

Page 28: ...on 3 We consider it not appropriate to include any terms and conditions with regard to the business transaction in the product specifications drawings or other technical documents Therefore if your technical documents as above include such terms and conditions such as warranty clause product liability clause or intellectual property infringement liability clause they will be deemed to be invalid N...

Reviews: