4. Loosen the azimuth lock knob at the base of the equatori-
al mount and rotate the mount so the telescope tube (and
R.A. axis) points roughly at Polaris. If you cannot see
Polaris directly from your observing site, consult a com-
pass and rotate the mount so the telescope points North.
Retighten the azimuth lock knob.
The equatorial mount is now polar aligned.
From this point on in your observing session, you should not
make any further adjustments in the azimuth or the latitude of
the mount, nor should you move the tripod. Doing so will undo
the polar alignment. The telescope should be moved only
about its R.A. and Dec. axes.
Use of the R.A. and Dec. Slow-Motion
Control Cables
The R.A. and Dec. slow-motion control cables allow fine
adjustment of the telescope's position to center objects within
the field of view. Before you can use the cables, you must
manually “slew” the mount to point the telescope in the vicinity
of the desired target. Do this by loosening the R.A. and Dec.
lock knobs and moving the telescope about the mount's R.A.
and Dec. axes. Once the telescope is pointed somewhere
close to the object to be viewed, retighten the mount's R.A.
and Dec. lock knobs.
The object should now be visible somewhere in the tele-
scope's finder scope. If it isn't, use the slow-motion controls to
scan the surrounding area of sky. When the object is visible in
the finder scope, use the slow-motion controls to center it.
Now, look in the telescope's eyepiece. If the finder scope is
properly aligned, the object should be visible somewhere in
the field of view. Once the object is visible in the eyepiece, use
the slow-motion controls to center it in the field of view.
The Dec. slow-motion control cable can move the telescope a
maximum of 25°. This is because the Dec. slow-motion mech-
anism has a limited range of mechanical travel. (The R.A.
slow-motion mechanism has no limit to its amount of travel.) If
you can no longer rotate the Dec. control cable in a desired
direction, you have reached the end of travel, and the slow-
motion mechanism must be reset. This is done by first rotating
the control cable several turns in the opposite direction from
which it was originally being turned. Then, manually slew the
telescope closer to the object you wish to observe (remember
to first loosen the Dec. lock knob). You should now be able to
use the Dec. slow-motion control cable again to fine adjust the
telescope's position.
Tracking Celestial Objects
When you observe a celestial object through the telescope,
you'll see it drift slowly across the field of view. To keep it in the
field, if your equatorial mount is polar aligned, just turn the
R.A. slow-motion control cable clockwise. The Dec. slow-
motion control cable is not needed for tracking. Objects will
appear to move faster at higher magnifications, because the
field of view is narrower.
7
Focusing the Finder Scope
If, when looking through the finder scope, the images appear
somewhat out of focus, you will need to refocus the finder
scope for your eyes. Turn the viewing end of the finder scope
clockwise or counter-clockwise as needed to focus the finder
scope on a distant object (1/4 mile away or more).
5. Setting Up and Using the
Equatorial Mount
When you look at the night sky, you no doubt have noticed
that the stars appear to move slowly from east to west over
time. That apparent motion is caused by the Earth's rotation
(from west to east). An equatorial mount (Figure 2) is
designed to compensate for that motion, allowing you to easi-
ly “track” the movement of astronomical objects, thereby
keeping them from drifting out of the telescope's field of view
while you're observing.
This is accomplished by slowly rotating the telescope on its
right ascension (R.A.) axis, using only the R.A. slow-motion
cable. But first the R.A. axis of the mount must be aligned
with the Earth's rotational (polar) axis - a process called
polar alignment.
Polar Alignment
For Northern Hemisphere observers, approximate polar align-
ment is achieved by pointing the mount's R.A. axis at the
North Star, or Polaris. It lies within 1° of the north celestial pole
(NCP), which is an extension of the Earth's rotational axis out
into space. Stars in the Northern Hemisphere appear to
revolve around the NCP.
To find Polaris in the sky, look north and locate the pattern of
the Big Dipper (Figure 5). The two stars at the end of the
“bowl” of the Big Dipper point right to Polaris.
Observers in the Southern Hemisphere aren't so fortunate to
have a bright star so near the south celestial pole (SCP). The
star Sigma Octantis lies about 1° from the SCP, but it is barely
visible with the naked eye (magnitude 5.5).
To Polar-Align the SpaceProbe 3 EQ
1. Level the equatorial mount by adjusting the length of the
three tripod legs.
2. Loosen the latitude lock t-bolt. Turn the latitude adjust-
ment t-bolt and tilt the mount until the pointer on the
latitude scale is set at the latitude of your observing site. If
you don't know your latitude, consult a geographical atlas
to find it. For example, if your latitude is 35° North, set the
pointer to 35. Then retighten the latitude lock t-bolt. The
latitude setting should not have to be adjusted again
unless you move to a different viewing location some dis-
tance away.
3. Loosen the Dec. lock knob and rotate the telescope optical
tube until it is parallel with the R.A. axis, as it is in Figure 1.
The pointer on the Dec. setting circle should read 90°.
Retighten the Dec. lock lever.