background image

8

receiving instrument. Since the input impedance of

the receiving instrument is normally 1000Ω or

more,theeffectiveinstrumentinputimpedancewith

the 100Ω terminator will be of the order of 93Ω and

this matches the cable impedance correctly.
For series termination use the 93Ω output of the

572A for the cable connection. Use 93Ω cable to

interconnect this into the input of the receiving

instrument. The 1000Ω (or more) normal input

impedance at the input connector represents an

essentially open circuit, and the series impedance

in the 572A now provides theproper termination for

the cable.
For the combination of series and shunt

termination,usethe93Ωoutputon therearpanelof

the 572A and use 93Ω cable. At the input for the

receiving instrument use a BNC tee to attach both

the signal cable and a 100Ω resistive terminator.

Note that the signal span at the receiving end of

this type of circuit will always be reduced to 50% of

the signal span furnished by the sending

instrument.
For customer convenience, ORTEC stocks the

proper terminators and BNC tees, or they can be

ordered from a variety of commercial sources.

3.7. SHORTING OR OVERLOADING THE

AMPLIFIER OUTPUTS

All outputs of the 572A are dc-coupled with an

output impedance of about 0.1Ω for the front panel

connectors and 93Ω for the rear panel connectors.

If the output is shorted with a direct short circuit the

output stage will limit the peak current of the output

so that the amplifier will not be harmed. When the

amplifier is terminated with 100Ω, the maximum

rate allowed to maintain the linear output is

[200000 cps/τ(µs)] x [10/V

o

,(V)].

3.8. INHIBIT OUTPUT CONNECTION

The Inhibit output on the rear panel is intended for

application at the anticoincidence input of the

Analyzer. An output pulse is generated through this

connector when a pulse pileup is sensed in the

572A, and the pulse can then be used to prevent

the Analyzer from measuring and storing a false

amplitude. The signal is dc-coupled and rises from

0 to about +5 V for a time equal to 6τ, starting when

a pileup occurs.

3.9. BUSY OUTPUT CONNECTION

The signal through the rear panel Busy output

connector rises from 0 to about +5 V at the onset of

each linear input Pulse. Its width is equal to the

time the input pulse amplitude exceeds the BLR

discriminator level, and is extended automatically

by the generation of an Inhibit output signal. It can

be used to provide MCA live-time correction, to

control the generation of input pulses, to observe

normal operation with an oscilloscope, or for any of

a variety of other applications. Its use is optional

and no termination is required if the output is not

being used.

3.10. CRM OUTPUT CONNECTION

OneNIM-standardpositivelogicpulseisgenerated

to correspond to each linear input pulse into the

572A. The pulses are available through the CRM

(Count Rate Meter) output BNC on the rear panel

and are intended for use in a count rate meter or

counter to monitor the true input count rate into the

amplifier. Its use is optional and no termination is

required if the output is not being used.

4.  OPERATING INSTRUCTIONS

4.1. INITIAL TESTING AND

OBSERVATION OF PULSE WAVEFORMS

Refer to Section 6 for information on testing

performance and observing waveforms at front

panel test points. Figure 4.1 shows some typical

unipolar and bipolar output waveforms.

4.2. FRONT PANEL CONTROLS

GAIN

A coarse Gain switch and a Gain 10-turn

lockingprecisionpotentiometerselectandprecisely

adjust the gain factor for the amplification in the

572A. Switch settings are X20, 50, 100, 200, 500,

and 1000. Continuous fine gain range is from X0.5

to X1.5, using markings of 500 through 1500 dial

divisions. An internal jumper setting provides one

additional gain factor selection of either X1.0 or

X0.1. Collectively the range of gain can be set at

Summary of Contents for 572A

Page 1: ...Model 572A Spectroscopy Amplifier Operating and Service Manual Printed in U S A ORTEC Part No 785100 0904 Manual Revision D...

Page 2: ...nbeassignedtotheunit Also ORTECmust be informed either in writing by telephone 865 482 4411 or by facsimile transmission 865 483 2133 of the nature of the fault of the instrument being returned and of...

Page 3: ...NS 7 3 7 SHORTING OR OVERLOADING THE AMPLIFIER OUTPUTS 8 3 8 INHIBIT OUTPUT CONNECTION 8 3 9 BUSY OUTPUT CONNECTION 8 3 10 CRM OUTPUT CONNECTION 8 4 OPERATING INSTRUCTIONS 8 4 1 INITIAL TESTING AND OB...

Page 4: ...a hazard that could result in bodily harm if the safety instruction is not observed CAUTION Indicates a hazard that could result in property damage if the safety instruction is not observed Please re...

Page 5: ...he instrument during external cleaning use only enough liquid to dampen the cloth or applicator SAFETY WARNINGS AND CLEANING INSTRUCTIONS Cleaning Instructions To clean the instrument exterior Unplug...

Page 6: ...vi...

Page 7: ...m 100 mV to 100mV Thisoutputpermitstheuse of the direct coupled input of the analyzer with a minimum amount of interface problems The 572A bipolar output may be preferable for spectroscopy when operat...

Page 8: ...seline with the preamplifier time constant The pole zero adjust is accessible from the front panel of the 572A and can easily be adjusted by observing the baselinewithanoscilloscopewithamonoenergetic...

Page 9: ...3 Fig 1 1 Differentiation in an Amplifier Without Pole Zero Cancellation Fig 1 2 Differentiation in a Pole Zero Canceled Amplifier...

Page 10: ...o 5OEC CROSSOVER WALK 3 ns for 50 1 dynamic range includingcontributionofORTEC551or552 Constant FractionTimingSingle ChannelAnalyzer using 50 fraction and 0 5 s shaping COUNT RATE STABILITY The1 33MeV...

Page 11: ...iometeradjuststheunipolar output baseline dc level range 100 mV to 100 mV 2 3 INPUT INPUT Type BNC front and rear panel connectors accept either positive or negative pulses with rise times in the rang...

Page 12: ...e pole zero adjustment see Section 4 6 An alternatemethodisaccomplishedeasilybyusinga monoenergetic source and observing the amplifier baseline with an oscilloscope after each pulse under approximatel...

Page 13: ...h shaping time constant is selected The 572A provides both unipolar and bipolar outputs Theunipolaroutputpulsesshouldbeused in applications where the best signal to noise ratio resolution is most impo...

Page 14: ...e pileup is sensed in the 572A and the pulse can then be used to prevent the Analyzer from measuring and storing a false amplitude The signal is dc coupled and rises from 0toabout 5Vforatimeequalto6 s...

Page 15: ...lates the threshold of the BLR gate according to the output noise level The Threshold setting permits manual control of the BLR gate threshold usingthescrewdrivercontrolimmediatelybelowthe toggle swit...

Page 16: ...on power in the Bin and Power Supply and allow the electronics of the system to warm up and stabilize b Set the 572A controls initially as follows Shaping 2 s Coarse Gain 50 Gain 1 000 Internal Jumper...

Page 17: ...of the preamplifier Adjusttheattenuatorsothatthe572A output amplitude is about 9 V d Observe the unipolar output of the 572A with an oscilloscope triggered from the 572ABusyoutput Adjust the PZ Adj co...

Page 18: ...tal deflection Trigger the oscilloscope with the Busy output from the 572A d Reduce the control setting until the baseline discriminator begins to trigger on noise this corresponds to about 200 counts...

Page 19: ...r for the same pulse height as the pulse obtained in stepc LocktheNormalizecontrolanddonotmove it again until recalibration is required The pulser is now calibrated the Pulse Height dial read directly...

Page 20: ...capacitance decreases thus reducing the resolution spread The overall resolution spread will depend upon which effect is dominant Figure4 7showscurvesoftypicalnoise resolution spread versus bias volt...

Page 21: ...PECTROSCOPY SYSTEMS HIGH RESOLUTION ALPHA PARTICLE SPECTROSCOPYSYSTEM Theblockdiagramof a high resolution Spectroscopy system for measuringnaturalalphaparticleradiationisshown in Fig 4 11 Alpha partic...

Page 22: ...ounters operated at high gas amplification tend to degrade the resolution capabilities drastically at x ray energies even at relatively low counting rates By using a high gain low noise amplifying sys...

Page 23: ...17 Fig 4 13 Scintillation Counter Gamma Spectroscopy System Fig 4 14 High Resolution X Ray Energy Analysis System Using a Proportional Counter Fig 4 15 General System Arrangement for Gating Control...

Page 24: ...18 Fig 4 16 Gamma Ray Charged Particle Coincidence Experiment Fig 4 17 Gamma Ray Pair Spectrometry...

Page 25: ...ant of 0 5 1 2 3 6 or 10 s The amplifier produces the fastshapedpulsefromthesamepreamplifierinput pulse and this triggers discriminator IC12 set just above the noise level The discriminator response t...

Page 26: ...20 Fig 5 1 Amplifier Block Diagram...

Page 27: ...ackard 3400A RMS Voltmeter 6 2 PULSER TEST1 Coarse Gain 1K Gain 1 5 Input Polarity Positive Shaping Time Constant 1 s BLR PZ Adj Variable control Fully CW for 300 mV a Connect a positive pulser output...

Page 28: ...y to vary the PZ Adj control on the front panel in order to cancel the pulser pole and minimize the time required for return to the baseline Increasethepulseroutputamplitudeto1000times the setting tha...

Page 29: ...rvations 6 4 FACTORY REPAIR This instrument can be returned to the ORTEC factoryforserviceandrepairatanominalcost Our standard procedure for repair ensures the same quality control and checkout that a...

Page 30: ...served bus 34 Power return ground 13 Spare 35 Reset Scaler 14 Spare 36 Gate 15 Reserved 37 Reset Auxiliary 16 12 V 38 Coaxial 17 12 V 39 Coaxial 18 Spare bus 40 Coaxial 19 Reserved bus 41 117 V ac neu...

Reviews: