background image

Manual-6

OPERATING INSTRUCTIONS

Selecting Crossover Frequencies

Most speaker manufacturers supply low and/or high

frequency cut-off points for each driver, especially if these
are supplied in a system. These cut-off frequencies are based
on each driver’s performance at and beyond this point, with a
certain safety margin to accommodate more gentle filter
roll-offs and resultant higher output beyond the recommended
performance range.

The AC 22 utilizes 41-detent crossover frequency selec-

tors which are precision potentiometers. The detents assure
consistent accuracy from channel to channel and unit to unit.
This is a distinct advantage over the continuously variable
designs using low-tolerance parts, possible knob misalign-
ment and panel screening variations. Even with 41 choices it
is possible that the exact recommended crossover frequency
may not fall on one of the detents on the selector. Not to
panic, for these sound reasons:

  1. The AC 22 possesses 24dB/octave roll-off, so the

crossover points may be set to the nearest detent above
or below the recommended limit with virtually no
hazard to the driver or degradation in sound quality. If
extremely high power levels are expected, it is safer to
defer to the high frequency drivers and shift the cross-
over point up in frequency rather than down.

  2. Detents do not rely on knob alignment, silk-screen

accuracy, parallax and other variables which erode the
accuracy of continuously variable designs. Chances are
that even careful visual alignment on these will often
yield a frequency error greater than a full detent on the
AC 22 .

  3. If it is absolutely critical to obtain the exact crossover

frequency (Mil Spec., P.A., etc.), the selector can be
positioned between detents 
if necessary. This of course
will require the aid of a precision signal generator and
other equipment to verify the exact setting.

For best overall system results, try to choose the speaker

components so that each operates well within its recom-
mended limits. This will provide valuable leeway so that you
may move crossover points in order to fine-tune the system,
and will also yield higher system reliability. If at all possible,
beg, borrow or best yet always use some kind of realtime
analyzer to tune your crossover and fine-tune the system for
each different location with an equalizer.

Time Delay Adjustment Procedure

Before jumping feet first into the realm of time delay and

how to adjust it, it might help to spend a moment to re-affirm
why on earth this delay is really necessary. For a detailed and
enjoyable short course on time delay, Linkwitz-Riley and
other mouth-watering details, we urge you to pick up free
copies of the RaneNotes “Linkwitz-Riley Crossovers” and
“Linkwitz-Riley Crossovers up to 8th Order”. Ask your dealer
or write to us here at the factory. In the way of summary, a
few words are in order here to outline the basic effects of time
delay in crossovers.

Problems pop up when two different speakers emit the

same frequency as occurs in the crossover regions of two,
three, four and five way systems. Because the two drivers are
displaced vertically, cancellation occurs somewhere off-axis
because the sound waves have to travel different distances
from the two speakers and hence, will arrive shifted in phase.
This forms a “lobe” or radiation pattern, bounded on either
side by cancellation lines or axes, which narrow the disper-
sion pattern or listening area of the speaker.

Fine. So we put up with it. But to make matters worse,

when two drivers are horizontally displaced—that is, one is in
the front of or behind the other, this “lobe” or dispersion
pattern gets tilted (usually upward) toward the driver that is
further behind. This gets hard to put up with, because the end
result is that your speaker system will have two, three, four or
more tilted radiation patterns and only two or three people in
the house will have decent seats. And we’re not talking trivial
pursuits here—this rampant lobing error can make a sound
system a real headache, to listener and operator alike.

The idea, then, is to be sure that all drivers are vertically

aligned and that all components are always in phase. Then all
the main lobes are on-axis, well behaved, and the system
enjoys the widest possible dispersion pattern so that everyone
gets good sound. The one catch is that in many cases it is
physically or otherwise impossible to get all the drivers
vertically lined up at the sound source. This is where time
delay comes in.

By electronically delaying the signal going to the front

driver, enough time allows the sound from the rear driver to
literally catch up to the forward driver’s voice coil, so that
signal from both drivers is emitted in phase—and it works!
Time delay makes an appreciable improvement in overall
sound. The trick is finding the proper time delay amount:
hence the rest of this section.

Unfortunately the amount of time delay is a function of

two factors (life ceased to be simple after age 9, right?): the
amount of horizontal displacement between driver voice coils,
and the actual crossover frequency involved. Setting delay
controls by ear is supposedly possible, but very tricky and
unreliable. The following methods are a couple of (but by no
means all) means of setting time delay.

Summary of Contents for AC 22

Page 1: ...o the CHANNEL 2 INPUT tells the unit that you are running a single channel system in Mono 3 Way mode and therefore sets the unit up to be a single channel device This can lead one to think that there...

Page 2: ...MONO SUB mode the Channel 1 LOW MUTE switch Mutes the MONO SUB Output Channel 2 s Mute is inactive LOW frequency time DELAY control adds from 0 to 2 ms of time Delay to the Low Output only This allows...

Page 3: ...LOW OUT The result is taken from the CHANNEL 1 LOW OUT jack Power input connector USE ONLY AN RS 1 OR OTHER REMOTE AC POWER SUPPLY APPROVED BY RANE This unit is supplied with a remote power supply sui...

Page 4: ...This 41 detent selector determines the Crossover Frequency between Low and Mid Outputs The detents will assure maximum accuracy and consistency between Channels Refer to page Manual 6 to deter mine p...

Page 5: ...frequency amp MID frequency OUTPUT Connect this Output to the input of the mid frequency amp LOW frequency OUTPUT Connect this Output to the input of the low frequency amp MONO SUB mode switch must b...

Page 6: ...y For a detailed and enjoyable short course on time delay Linkwitz Riley and other mouth watering details we urge you to pick up free copies of the RaneNotes Linkwitz Riley Crossovers and Linkwitz Ril...

Page 7: ...from the mid driver set the analyzer DISPLAY LEVEL control so the LED s corresponding to the high crossover fre quency are reading 0 dB this would be a green LED at the crossover frequency with the R...

Page 8: ...set the output level controls as outlined on page 11 Time Delay Adjustment Using SPL Meter and Tone Generator Now that good quality realtime analyzers are becoming more affordable and easier to use th...

Page 9: ...h driver is actually in front of the mid driver adding delay to the mid driver then only worsens the situation There are a couple of ways to deal with this a Try to move the high driver back as far as...

Page 10: ...6 7 MAX 200 1 1 5 2 2 5 3 5 5 6 7 MAX 250 1 1 5 2 2 5 3 5 5 7 8 MAX 300 1 1 5 2 2 5 3 5 5 5 7 MAX 400 1 1 5 2 2 5 4 6 8 MAX 450 1 1 5 2 2 5 4 6 8 MAX 500 1 1 5 2 2 5 4 6 8 MAX 800 1 1 5 2 3 5 7 MAX lk...

Page 11: ...e a few recommended methods of setting crossover output Levels Setting Levels Using a Realtime Analyzer NOTE If you are running two channels tune up only one channel at a time 1 Set all LEVEL controls...

Page 12: ...response 1 Run pink noise into the crossover inputs through the mixer or directly as is convenient 2 Make sure all crossover output LEVELs are turned all the way down and all amplifier level controls...

Page 13: ...circuits 6 To install the Delay 2 circuit into Channel 2 s High Frequency output find jumper W25 and remove it 7 Install a long jumper from W22 Pin 2 to W25 Pin 1 8 Install a long jumper from W20 Pin...

Reviews: