background image

2/16 

Recommended Operating Range 

Parameter Symbol 

Limit 

Unit 

Supply voltage 

VDD 

3.0

3.6 

 

Input H voltage 

VINH 

0.8VDD

VDD 

 

Input L voltage 

VINL 

0.0

0.2VDD 

 

Operating temperature 

Topr 

10

70 

 

Output load 

 

 

 

22Pin / 19Pin  CL_CLK768FS/384FS

32(MAX) 

pF 

13Pin , 14Pin 

CL_BUFOUT 

50(MAX) 

pF 

18Pin / 24Pin 

CL_CLK512FS/54M 

15(MAX) 

pF 

 

 

Electrical characteristics 
VDD=3.3V, Ta=25

, Crystal frequency (XTAL_IN)

=

27.000000MHz, at no load, unless otherwise specified. 

Parameter Symbol 

Limit 

Unit Condition 

Min. Typ. Max. 

Consumption circuit current

 

IDD 

 55 71.5 

mA 

At no output loads 

Output H voltage

 

VOH 2.4 

 

 V 

When current load 

=

 -4.0mA 

Output L voltage

 

VOL 

 

 0.4 

When current load 

=

4.0mA 

Pull-Up resistance value

 

FSEL

OE 

Pull-Up

 

168 260 578 

k

Ω

 

Specified by a current value running 

when a voltage of 0V is applied to a 

measuring pin. (R

=

DD/I) 

Pull-Down resistance value

 

TEST 

Pull-down

31 48 106 

k

Ω

 

Specified by a current value running 

when a VDD is applied to a measuring 

pin. (R

=

VDD/I) 

Output frequency

 

CLK768FS

FSEL=L CLK768 

FS_L 

 33.868800 

 MHz 

XTAL_IN

×

(3136/625)/4 

CLK768FS

FSEL=H CLK768 

FS_H 

 36.864000 

 MHz 

XTAL_IN

×

(2048/375)/4 

CLK384FS CLK384 

FS 

 18.432000 

 MHz 

XTAL_IN

×

(2048/375)/8 

CLK512FS CLK512 

FS 

 24.576000 

 MHz 

XTAL_IN

×

(2048/375)/6 

CLK54M 

CLK54M 

 54.000000 

 MHz 

XTAL_IN

×

(32/4)/4 

Output waveform

 

Duty 

Duty1 45 

50 

55 

 

Measured at a voltage of 1/2 of VDD 

Rise time 

Tr 

 2.5 

 nsec 

Period of time required for the output 

to reach 80% from 20% of VDD 

Fall time 

Tf 

 2.5 

 nsec 

Period of time required for the output 

to reach 20% from 80% of VDD 

Jitter

 

Period-Jitter

 

1

σ

 

P-J1

σ

 

 50 

 psec 

Period-Jitter

 

MIN-MAX P-J 

MIN-MAX 

 300 

 psec 

Output Lock-Time

 

Tlock 

 

 1 

msec 

Frequency stability

 

Δ

F/F0 

15 

 15 

ppm 

T

=

-10

70

℃ 、

VDD=3.3V

±

0.15V 

Frequency sensitivity

 

Δ

F/Fc 

±

30 

±

45 

±

60 ppm 

Frequency sensitivity linearity

 

Linearity 

10   10 

ppm 

Buffer skew

 Tskew 

_BUF 

500 

 500 

psec 

Phase difference between 
BUF_OUT1 and BUF_OUT2

Buffer delay

 

Td_BUF 

 4  8 

nsec 

Phase difference between 
BUF_IN and BUF_OUT 

Note) The output frequency is determined by the arithmetic (frequency division) expression of a frequency input to XTAL_IN. 

 

Summary of Contents for BU2365FV

Page 1: ...oviding the reduced number of the system components Features 1 The ROHM s unique PLL technology allows for the generation of high C N clocks 2 Built in high precision VCXO which is essential for the DVD recorder system 3 Built in buffer having high driving force Load capacity output CL 50pF 27MHz drive 1 input 2 outputs 4 Built in half pulse clock protection HPC 5 Built in power down function Icc ...

Page 2: ...d to a measuring pin R VDD I Output frequency CLK768FS FSEL L CLK768 FS_L 33 868800 MHz XTAL_IN 3136 625 4 CLK768FS FSEL H CLK768 FS_H 36 864000 MHz XTAL_IN 2048 375 4 CLK384FS CLK384 FS 18 432000 MHz XTAL_IN 2048 375 8 CLK512FS CLK512 FS 24 576000 MHz XTAL_IN 2048 375 6 CLK54M CLK54M 54 000000 MHz XTAL_IN 32 4 4 Output waveform Duty Duty1 45 50 55 Measured at a voltage of 1 2 of VDD Rise time Tr ...

Page 3: ...system in use 5 Frequency sensitivity Frequency sensitivity linearity These parameters represents that the frequency falls within the area shown in Fig 2 in the control circuit of control voltage shown in Fig 1 It shows the value of IC itself Since no consideration is given to the stability of the crystal oscillator it should be separately studied according to the system in use Common Recommended ...

Page 4: ... 12 24 576MHz output waveform VDD 3 3V CL 15pF Fig 13 24 576MHz Period Jitter VDD 3 3V CL 15pF Fig 14 24 576MHz spectrum VDD 3 3V CL 15pF Fig 3 33 8688MHz output waveform VDD 3 3V CL 32pF Fig 4 33 8688MHz Period Jitter VDD 3 3V CL 32pF 1 0V div 5 0nsec div 1 0V div 500psec div 10dB div 10KHz div RBW 1KHz VBW 100Hz 1 0V div 5 0nsec div 1 0V div 500psec div 10dB div 10KHz div RBW 1KHz VBW 100Hz 1 0V...

Page 5: ... 50pF Fig 21 VCXO_OUT 27MHz output waveform VDD 3 3V CL 4pF Fig 22 VCXO_OUT 27MHz Period Jitter VDD 3 3V CL 4pF Fig 24 Buffer skew output waveform VDD 3 3V CL 50pF Fig 25 Buffer delay IN OUT1 VDD 3 3V CL 50pF Fig 26 Buffer delay IN OUT2 VDD 3 3V CL 50pF 1 0V div 5 0nsec div 1 0V div 500psec div 10dB div 10KHz div RBW 1KHz VBW 100Hz 1 0V div 5 0nsec div 1 0V div 500psec div 10dB div 10KHz div RBW 1...

Page 6: ...0 25 50 75 100 Temperature T Fall Time Tf nsec VDD 2 9V VDD 3 3V VDD 3 7V 0 10 20 30 40 50 60 70 80 90 100 25 0 25 50 75 100 Temperature T Period Jitter 1 σ P J1 σ psec 0 100 200 300 400 500 600 25 0 25 50 75 100 Temperature T Period Jitter MIN MAX P JMIN MAX psec VDD 2 9V VDD 3 3V VDD 3 7V 45 46 47 48 49 50 51 52 53 54 55 25 0 25 50 75 100 Temperature T Duty Duty VDD 3 7V VDD 2 9V VDD 3 3V VDD 2 ...

Page 7: ... Temperature Period Jitter MIN MAX Fig 43 24 576MHz Temperature rise time Fig 44 24 576MHz Temperature fall time Fig 45 24 576MHz Temperature Period Jitter 1σ VDD 3 3V VDD 2 9V VDD 3 7V VDD 2 9V VDD 3 3V VDD 3 7V 0 0 5 1 1 5 2 2 5 3 3 5 4 4 5 5 25 0 25 50 75 100 Temperature T Fall Time Tf nsec VDD 2 9V VDD 3 3V VDD 3 7V 0 10 20 30 40 50 60 70 80 90 100 25 0 25 50 75 100 Temperature T Period Jitter...

Page 8: ... MIN MAX Fig 52 27MHz BUFFER Temperature Duty Fig 53 27MHz BUFFER Temperature rise time Fig 54 27MHz BUFFER Temperature fall time VDD 2 9V VDD 3 3V VDD 3 7V VDD 2 9V VDD 3 3V VDD 3 7V 0 0 5 1 1 5 2 2 5 3 3 5 4 4 5 5 25 0 25 50 75 100 Temperature T Fall Time Tf nsec VDD 2 9V VDD 3 3V VDD 3 7V 0 10 20 30 40 50 60 70 80 90 100 25 0 25 50 75 100 Temperature T Period Jitter 1 σ P J1 σ psec 0 100 200 30...

Page 9: ...r MIN MAX Fig 64 27MHz VCXO Control voltage Frequency data Fig 66 Power down Standby Current 45 46 47 48 49 50 51 52 53 54 55 25 0 25 50 75 100 Temperature T Duty Duty VDD 2 9V VDD 3 3V VDD 3 7V 0 0 5 1 1 5 2 2 5 3 3 5 4 4 5 5 25 0 25 50 75 100 Temperature T Rise Time Tr nsec VDD 2 9V VDD 3 3V VDD 3 7V VDD 2 9V VDD 3 3V VDD 3 7V 15 12 9 6 3 0 3 6 9 12 15 25 0 25 50 75 100 Temperature T Center freq...

Page 10: ...Jitter MIN MAX 0 100 200 300 400 500 600 700 0 10 20 30 40 50 60 70 Output Load CL pF Period Jitter MIN MAX P JMIN MAX psec VDD 3 3V 0 100 200 300 400 500 600 700 0 10 20 30 40 50 60 70 Output Load CL pF Period Jitter MIN MAX P JMIN MAX psec VDD 3 3V 0 100 200 300 400 500 600 700 0 10 20 30 40 50 60 70 Output Load CL pF Period Jitter MIN MAX P JMIN MAX psec VDD 3 3V 0 100 200 300 400 500 600 700 0...

Page 11: ...84FS 18 432MHz output 20 VSS GND for PLL Logic 21 VDD Power supply for PLL Logic 22 CLK768FS FSEL L 33 8688 MHz output FSEL OPEN 36 864 MHz output 23 OE Output enable pin L POWER DOWN OPEN NORMAL equipped with pull up resistor 24 CLK54M 54MHz output 22 CLK768FS 21 VDD 20 VSS 19 CLK384FS 18 CLK512FS 17 VDD_B 1 VDD54M 2 VSS54M 3 FSEL 4 TEST 5 AVDD 6 AVSS 7 XTAL_IN 23 OE 8 XTAL_OUT 24 CLK54M 16 BUF_I...

Page 12: ...in the measurements on the tests before shipment MIN TYP MAX True value nsec 17 0 20 0 23 0 2 Half pulse clock protection HPC The CLK768FS output is provided with a function used to prevent the occurrence of asynchronous droop of half cycle or less i e half pulse clock while in frequency selection under the FSEL pin control This function is designed to set the frequency to output L fixed after the...

Page 13: ...rcuit of I O PIN No Equivalent circuit of I O 3 23 With pull up 4 With pull down 13 14 18 19 22 24 10 7 16 8 B U 2 3 6 5 F V Lot No Fig 81 To the inside of IC From the inside of IC To the inside of IC To the inside of IC To the inside of IC From the inside of IC ...

Page 14: ... for the use of the BU2365FV the operating margin should be thoroughly checked 6 Depending on the conditions of the substrate mount an additional electrolytic capacitor between the power supply and GND terminal 7 For EMI protection it is effective to put ferrite beads in the origin of power supply to be fed to the BU2365FV from the substrate or to insert a capacitor of 1Ω or less impedance which b...

Page 15: ...oneous mounting can break down the ICs Furthermore if a short circuit occurs due to foreign matters entering between terminals or between the terminal and the power supply or the GND terminal the ICs can break down 7 Operation in strong electromagnetic field Be noted that using ICs in the strong electromagnetic field can malfunction them 8 Inspection with set PCB On the inspection with the set PCB...

Page 16: ...of feed Embossed carrier tape 2000pcs E2 The direction is the 1pin of product is at the upper left when you hold reel on the left hand and you pull out the tape on the right hand Reel Direction of feed 1pin 1234 1234 1234 1234 1234 1234 1234 1234 When you order please order in times the amount of package quantity B U 2 3 6 5 E F Type Packing specification E2 Reel like emboss taping 2 Part No Packa...

Page 17: ...ll bear no re sponsibility whatsoever for any dispute arising from the use of such technical information The Products specified in this document are intended to be used with general use electronic equipment or devices such as audio visual equipment office automation equipment communication devices elec tronic appliances and amusement devices The Products are not designed to be radiation tolerant W...

Reviews: