8 — English
EXTENSION CORD CABLE SIZE
Refer to the table below to ensure the cable size of the extension cords you use are capable of carrying the required load.
Inadequate size cables can cause a voltage drop, which can burn out the appliance and overheat the cord.
Current in
Amperes
Load in Watts
Maximum Allowable Cord Length
At 120V
At 240V
#8 Wire
#10 Wire
#12 Wire
#14 Wire
#16 Wire
2.5
300
600
1000 ft.
600 ft.
375 ft.
250 ft.
5
600
1200
500 ft.
300 ft.
200 ft.
125 ft.
7.5
900
1800
350 ft.
200 ft.
125 ft.
100 ft.
10
1200
2400
250 ft.
150 ft.
100 ft.
50 ft.
15
1800
3600
150 ft.
100 ft.
65 ft.
20
2400
4800
175 ft.
125 ft.
75 ft.
25
3000
6000
150 ft.
100 ft.
30
3600
7200
125 ft.
65 ft.
40
4800
9600
90 ft.
ELECTRIC MOTOR LOADS
It is characteristic of common electric motors in normal operation to draw up to six times their running current while starting.
This table may be used to estimate the watts required to start electric motors; however, if an electric motor fails to start or
reach running speed, turn off the appliance or tool immediately to avoid equipment damage. Always check the requirements
of the tool or appliance being used compared to the rated output of the generator.
Motor Size (H.P.)
Running Watts
Watts Required to Start Motor
Universal
Capacitor
Split Phase
1/8
275
N/A
850
1200
1/6
275
600
850
2050
1/4
400
800
1050
2400
1/3
450
950
1350
2700
1/2
600
1000
1800
3600
3/4
850
1200
2600
—
1
1100
N/A
3300
—
NOTICE:
Operating voltage and frequency requirement of all
electronic equipment should be checked prior to plug-
ging them into this generator. Damage may result if the
equipment is not designed to operate within a +/- 10%
voltage variation, and +/- 3 hz frequency variation from
the generator name plate ratings. To avoid damage, al-
ways have an additional load plugged into the generator
if solid state equipment (such as a television set) is used.
A power line conditioner is recommended for some solid
state applications.
GROUND FAULT CIRCUIT INTERRUPTER
See Figure 1.
The 20 amp, 120 volt receptacles on the generator are
protected by a Ground Fault Circuit Interrupter (GFCI),
which guards against the hazards of ground fault currents.
An example of ground fault current is the current that would
flow through a person who is using an appliance with faulty
insulation and, at the same time, is in contact with an electrical
ground such as a plumbing fixture, wet floor, or earth.
GFCI receptacles do not protect against short circuits,
overloads, or shocks.
The GFCI receptacles can be tested with the TEST and
RESET buttons.
To test:
Depress the TEST button. This should cause the Reset
button to pop out.
To restore power, depress the RESET button.
Perform this test monthly to ensure proper operation of the
GFCI. If the generator is stored outdoors, unprotected from
the weather, test the GFCI receptacle before each use.
ELECTRICAL