background image

CALCULATION EXAMPLES
EXEMPLES DE CALCUL
ANWENDUNGSBEISPIELE
EJEMPLOS DE CÁLCULO
EXEMPLOS DE CÁLCULO
ESEMPI DI CALCOLO
REKENVOORBEELDEN
PÉLDASZÁMÍTÁSOK

PŘÍKLADY VÝPOČTŮ

RÄKNEEXEMPEL
LASKENTAESIMERKKEJÄ
UDREGNINGSEKSEMPLER

CONTOH-CONTOH PERHITUNGAN

陹ꩥ

PRINTED IN CHINA / IMPRIMÉ EN CHINE / IMPRESO EN CHINA

07HGK (TINSZ1308EHZZ)

 

J

100000 

÷

 3 

=

[NORM1]

j

 

100000

 

z

 

3

 

=

 

U

 

U

33

'

333

.

33333

 [FIX: TAB 2]

@

 

J

 

1

 

0

 

2

33

'

333

.

33

 [SCI: SIG 2]

@

 

J

 

1

 

1

 

2

3

.

3

b

04

 [ENG: TAB 2]

@

 

J

 

1

 

2

 

2

33

.

33

b

03

 [NORM1]

@

 

J

 

1

 

3

33

'

333

.

33333

÷

 1000 

[NORM1]

j

 

3

 

z

 

1000

 

=

U

0

.

003

 [NORM2]

@

 

J

 

1

 

4

3

.

b

-

03

 [NORM1]

@

 

J

 

1

 

3

0

.

003

2

 

U

 2 

3

⎯ + ⎯ =

 5 

4

j

 

2

 

W

 

5

 

r

 

+

 

W

 

3

 

r

 

4

 

=

 

3

 

20

U

 

23

 

 

20

U

1

.

15

U

 

3

 

20

P

×

 

P

=

@

 

*

 

3

 

r

 

k

 

@

 

*

 

5

 

=

H

15

U

3

.

872983346

P

÷

 3 

+

 

P

÷

 5 

=

@

 

*

 

2

 

r

 

z

 

3

 

+

 

@

 

*

 

5

 

z

 

5

 

=

3

Q

5+5

Q

2

15

U

0

.

918618116

8

2

 

 3

4

 

×

 5

2

 

=

8

 

m

 

S

 

2

 

r

 

&

 

3

 

m

 

4

 

r

  

k

 

5

 

A

 

=

 

63

-

2024 

 

64

U

 

129599

-

 

 

64

U

-

2

'

024

.

984375

o

8

 

m

 

S

 

2

 

&

 

3

 

m

 

4

 

k

 

5

 

A

 

=

-

2

'

024

.

984375

U

-

2024

m

63

m

64

U

-

129599

m

64

(12

3

)

1

4

 

=

(

 

12

 

m

 

3

 

r

 

)

 

m

 

1

 

W

 

4

 

=

6

.

447419591

o

(

 

12

 

m

 

3

 

)

 

m

 

1

 

W

 

4

 

=

6

.

447419591

8

3

 

=

8

 

@

 

1

 

=

512

.

p

49 

 

4

p

81 

=

@

 

*

 

49

 

r

 

&

 

4

 

@

 

D

 

81

 

=

4

.

o

@

 

*

 

49

 

&

 

4

 

@

 

D

 

81

 

=

4

.

3

p

27 

=

@

 

q

 

27

 

=

3

.

4! 

=

4

 

@

 

B

 

=

24

.

10

P

3

 

=

10

 

@

 

e

 

3

 

=

720

.

5

C

2

 

=

5

 

@

 

c

 

2

 

=

10

.

500 

×

 25% 

=

500

 

k

 

25

 

@

 

a

125

.

120 

÷

 400 

=

 ?%

120

 

z

 

400

 

@

 

a

30

.

500 

+

 (500 

×

 25%) 

=

500

 

+

 

25

 

@

 

a

625

.

400 

 (400 

×

 30%) 

=

400

 

&

 

30

 

@

 

a

280

.

 9 

|

 

=

@

 

W

 

5

 

&

 

9

 

=

4

.

o

@

 

W

 

(

 

5

 

&

 

9

 

)

 

=

4

.

θ

 

=

 sin

1

 

x

θ

 

=

 tan

1

 

x

θ

 

=

 cos

1

 

x

DEG

90 

 

θ

 

 90

 

θ

 

 180

RAD

− π

2

 

 

θ

 

 

π

2

 

θ

 

 

π

GRAD

100 

 

θ

 

 100

 

θ

 

 200

7

  

F

 

G

2

8

(

x

2

 

 5)

dx

j

 

F

 

2

 

u

 

8

 

r

;

 

X

 

A

 

&

 

5

n

 

=

 100

=

138.

n

 

=

 10

l

 

l

 

H

 

10

 

=

138.

o

j

 

F

 

;

 

X

 

A

 

&

 

5

H

 

2

 

H

 

8

 

)

 

=

138.

 

l

 

l

 

H

 

10

 

=

138.

 

1

1

(

x

2

 

 1)

dx

 

+

 

1

3

(

x

2

 

 1)

dx

 

=

S

 

F

 

S

 

1

 

u

 

1

 

r

 

;

 

X

 

A

 

&

 

1

 

r

 

+

 

F

 

1

 

u

 

3

 

r

 

;

 

X

 

A

 

&

 

1

 

=

8.

11 

+

 4 

=

 ANS

j

 

6

 

+

 

4

 

=

10

.

ANS 

+

 5 

=

+

 

5

 

=

15

.

×

 2 

=

 ANS

8

 

k

 

2

 

=

16

.

ANS

2

 

=

A

 

=

256

.

44 

+

 37 

=

 ANS

44

 

+

 

37

 

=

81

.

ANS 

=

@

 

*

 

=

9

.

12 

W

 

k

 1  4

⎯ + ⎯ =

 2  3

j

 

3

 

@

 

k

 

1

 

d

 

2

 

r

 

+

 

W

 

4

 

d

 

3

 

=

 

5

 

6

U

29

6

U

4.833333333

o

3

 

W

 

1

 

W

 

2

 

+

 

4

 

W

 

3

 

=

*

4

m

5

m

6

U

29

m

6

U

4.833333333

10

2

3

 

=

@

 

Y

 

2

 

W

 

3

 

=

4.641588834

(

7

5

)

5

 

=

7

 

W

 

5

 

r

 

m

 

5

 

=

16807

3125

o

7

 

W

 

5

 

m

 

5

 

=

16807

m

3125

1

8

3

 

=

@

 

q

 

1

 

W

 

8

 

=

1

2

64

225

 

=

@

 

*

 

64

 

W

 

225

 

=

8

15

2

3

3

4

 

=

2

 

@

 

1

 

W

 

3

 

m

 

4

 

=

8

81

o

2

 

@

 

1

 

W

 

(

 

3

 

m

 

4

 

)

 

=

8

m

81

1.2

2.3

 

=

1

.

2

 

W

 

2

.

3

 

=

12

23

1°2’3”

2

 

=

1

 

[

 

2

 

[

 

3

 

W

 

2

 

=

0(31

q

1

.

5

"

×

 10

3

×

 10

3

 

=

1

 

`

 

3

 

W

 

2

 

`

 

3

 

=

1

2

 A

j

 

7

 

x

 

A

7

.

4

A

 

W

 

;

 A 

=

4

7

1.25 

+

 

2

5

 

=

1

.

25

 

+

 

2

 

W

 

5

 

=

 

13

 

20

U

33

20

U

1

.

65

o

1

.

25

 

+

 

2

 

W

 

5

 

=

1

.

65

U

1

m

13

m

20

U

33

m

20

* 4

m

5

m

6 = 

  5

  6

13 

z

 

r

 

g

 

h

 

/

 

d

 

n

 

4

 

p

 

x

 

C

DEC (25) 

 BIN

j

 

@

 

/

 

25

 

@

 

z

BIN

11001

HEX (1AC)

@

 

h

 

1AC

 BIN

@

 

z

BIN

110101100

 PEN

@

 

r

PEN

3203

 OCT

@

 

g

OCT

654

 DEC

@

 

/

428

.

(1010 

 100) 

×

 11 

=

[BIN]

@

 

z

 

(

 

1010

 

&

 

100

)

 

k

 

11

 

=

BIN

10010

BIN (111) 

 NEG  

d

 

111

 

=

BIN

1111111001

HEX (1FF) 

+

 

OCT (512) 

=

@

 

h

 

1FF

 

@

 

g

 

+

 

512

 

=

 

OCT

1511

HEX (?)

@

 

h

HEX

349

 2FEC 

 2C9E

 

 M

1

+

) 2000 

 1901

 

 M

2


 M 

=

 

j

 

x

 

M

 

@

 

h

 

2FEC

 

&

 

2C9E

 

m

HEX

34

E

2000

 

&

1901

 

m

HEX

6

FF

t

 

M

 

j

 

x

 

M

 

HEX

A

4

D

1011 AND 101 

=

 

[BIN] 

@

 

z

 

1011

 

4

 

101

 

=

BIN

1

5A OR C3 

=

 

[HEX]

@

 

h

 

5A

 

p

 

C3

 

=

HEX

DB

NOT 10110 

=

 

[BIN]

@

 

z

 

n

 

10110

 

=

BIN

1111101001

24 XOR 4 

=

 

[OCT]

@

 

g

 

24

 

x

 

4

 

=

OCT

20

B3 XNOR 2D 

=

 

[HEX]

@

 

h

 

B3

 

C

 

2D

 

=

HEX

FFFFFFFF

61

 DEC

@

 

/

-

159

.

14 

[

 

:

7°31’49.44” 

 [10]

j

 

7

 

[

 

31

 

[

 

49

.

44

 

@

 

:

 

663

 

1250

123.678 

 [60]

123

.

678

 

@

 

:

123(40

q

40

.

8

"

3h 30m 45s + 
6h 45m 36s = [60]

3

 

[

 

30

 

[

 

45

 

+

 

6

 

[

 

45

 

[

 

36

 

=

10(16

q

21

."

1234°56’12” + 
0°0’34.567” = [60]

1234

 

[

 

56

 

[

 

12

 

+

 

0

 

[

 

0

 

[

 

34

.

567

 

=

1234(56

q

47

."

3h 45m – 1.69h 
= [60]

3

 

[

 

45

 

&

 

1

.

69

 

=

 

@

 

:

2(3

q

36

."

sin 62°12’24” 
= [10]

v

 

62

 

[

 

12

 

[

 

24

 

=

0

.

884635235

24° 

 [”]

24

 

[

 

N

 

4

86

q

400

.

1500” 

 [’]

0

 

[

 

0

 

[

 

1500

 

N

 

5

25

.

15 

u

 

E

 

H

x

 = 6

y

 = 4

 

 

r

 = 

θ

 =  [°]

j

 

6

 

H

 

4

 

@

 

u

r

:

{

:

7

.

211102551 

33

.

69006753

r

 = 14

θ

 = 36 [°]

 

 

x

 =

y

 =

14

 

H

 

36

 

@

 

E

X

:

Y

:

11

.

32623792 

8

.

228993532

16 

K

 

L

V

0

 

=

 15.3 m/s

=

 10 s

V

0

+

 

1

2

gt

2

 

? m

j

 

15

.

3

 

k

 

10

 

+

 

2

 

@

 

Z

 

k

 

K

 

03

 

k

 

10

 

A

 

=

 

U

643

.

3325

125 yd 

=

 ? m

j

 

125

@

 

L

 

05

 

=

U

 

U

114

.

3

•  Physical constants and metric conversions are shown in the tables.
•  Les constantes physiques et les conversions des unités sont 

indiquées sur les tableaux.

•  Physikalische Konstanten und metriche Umrechnungen sind in 

der Tabelle aufgelistet.

•  Las constants fi sicas y conversiones métricas son mostradas 

en las tables.

•  Constantes fi sicas e conversões métricas estão mostradas nas 

tablelas.

•  La constanti fi siche e le conversioni delle unità di misura vengono 

mostrate nella tabella.

•  De natuurconstanten en metrische omrekeningen staan in de 

tabellen hiernaast.

• 

A fi zikai konstansok és a metrikus átváltások a táblázatokban 
találhatók.

• 

Fyzikální konstanty a převody do metrické soustavy jsou uvedeny 
v tabulce.

•  Fysikaliska konstanter och metriska omvandlingar visas i tabellerna.
•  Fysikaaliset vakiot ja metrimuunnokset näkyvät taulukoista.
•  Fysiske konstanter og metriske omskrivninger vises i tabellen.
• 

 •

•  Konstanta fi sika dan konversi metrik diperlihatkan di dalam tabel.
• 

斲殯͑儆垫穢͑恂庲͑旇朞͑愕͑埮氊͑筞斶͑愯憛汆͑埪汒͑祢歆͑償枻城埪͟

K

 

01–52

01: 

c

,

 c

0

(m s

–1

)

19: 

µ

B

(J T

–1

)

37: 

e

V

(J)

02: 

G

(m

3

 kg

–1

 s

–2

) 20: 

µ

e

(J T

–1

)

38: 

t

(K)

03: 

g

n

(m s

–2

)

21: 

µ

N

(J T

–1

)

39: 

AU

(m)

04: 

m

e

(kg)

22: 

µ

p

(J T

–1

)

40: 

pc

(m)

05: 

m

p

(kg)

23: 

µ

n

(J T

–1

)

41: 

M

(

12

C) (kg mol

–1

)

06: 

m

n

(kg)

24: 

µ

µ

(J T

–1

)

42: 

h

-

(J s)

07: 

m

µ

(kg)

25: 

λ

c

(m)

43: 

E

h

(J)

08: 

1

u

(kg)

26: 

λ

c

,

 p

(m)

44: 

G

0

(s)

09: 

e

(C)

27: 

σ

(W m

–2

 K

–4

)

45: 

α

–1

10: 

h

(J s)

28: 

N

A

,

 

L

(mol

–1

)

46: 

m

p

/

m

e

11: 

k

(J K

–1

)

29: 

V

m

(m

3

 mol

–1

)

47: 

M

u

(kg mol

–1

)

12: 

µ

0

(N A

–2

)

30: 

R

(J mol

–1

 K

–1

) 48: 

λ

c

,

 n

(m)

13: 

ε

0

(F m

–1

)

31: 

F

(C mol

–1

)

49: 

c

1

(W m

2

)

14: 

r

e

(m)

32: 

R

K

(

)

50: 

c

2

(m K)

15: 

α

33: –

e

/

m

e

(C kg

–1

)

51: 

Z

0

(

)

16: 

a

0

(m)

34: 

h

/2

m

e

(m

2

 s

–1

)

52: atm

(Pa)

17: 

R

(m

–1

)

35: 

γ

p

(s

–1

 T

–1

)

18: 

Φ

0

(Wb)

36: 

K

J

(Hz V

–1

)

x

 

@

 

L

 

01–44

01: in

cm

16: kg

→lb

31: cal

IT

J

02: cm

in

17: 

°

F

°

C

32: J

cal

IT

03: ft

m

18: 

°C

°F

33: hp

W

04: m

ft

19: gal (US)

L

34: W

hp

05: yd

m

20: L

gal (US)

35: ps

W

06: m

yd

21: gal (UK)

L

36: W

ps

07: mi

km

22: L

gal (UK)

37: kgf/cm

2

Pa

08: km

mi

23: fl  oz(US)

mL

38: Pa

kgf/cm

2

09: n mi

m

24: mL

fl  oz(US)

39: atm

Pa

10: m

n mi

25: fl  oz(UK)

mL

40: Pa

atm

11: acre

m

2

26: mL

fl  oz(UK)

41: mmHg

Pa

12: m

2

acre

27: cal

th

J

42: Pa

mmHg

13: oz

g

28: J

cal

th

43: kgf·m

N·m

14: g

oz

29: cal

15

J

44: N·m

kgf·m

15: lb

kg

30: J

cal

15

17 

N

 

(ENG)

100 m 

×

 10 k 

=

 ?

100

 

N

 

3

 

4

 

k

 

10

 

N

 

3

 

0

 

=

1

'

000

.

18 

n

 

J

 [FIX, TAB 

=

 1]

j

 

@

 

J

 

1

 

0

 

1

0

.

0

÷

 9 

=

 ANS

5

 

z

 

9

 

=

5

9

U

0

.

6

ANS 

×

 9 

=

k

 

9

 

=

 *

1

5

.

0

5

 

z

 

9

 

=

5

9

U

0

.

6

 [MDF]

@

 

n

3

5

ANS 

×

 9 

=

k

 

9

 

=

 *

2

 

2

 

5

U

 

U

5

.

4

 [NORM1]

@

 

J

 

1

 

3

5

.

4

*

1

 

5

9

 

×

 9 = 5.5555555555555 

×

 10

1

 

×

 9

*

2

 

3

5

 

×

 9 = 0.6 × 9

19 

N

 

(ALGB)

f

(

x

=

 

x

3

 

 3

x

2

 

+

 2

j

 

;

 

X

 

@

 

1

 

-

 

3

 

;

 

X

 

A

 

+

 

2

x

 

=

 

1

N

 

1

 

S

 

1

 

e

-

2

.

x

 

=

 

0.5

N

 

1

 

S

 

0

.

5

 

e

 

 

1

 

8

A

2

 + B

2

@

 

*

 

;

 

A

 

A

 

+

 

;

 

B

 

A

=

 2, B 

=

 3

N

 

1

 

2

 

e

 

3

 

e

H

13

=

 2, B 

=

 5

N

 

1

 

e

 

5

 

e

H

29

20 

N

 

(SOLVER)

sin 

x

 

 0.5

j

 

v

 

;

 

X

 

-

 

0

.

5

Start 

=

 0

N

 

2

 

0

 

e

 

e

30

.

Start 

=

 180

e

 

180

 

e

 

e

150

.

21 

_

 

H

 

R

 

v

 

p

 

c

 

g

 

o

 

Q

 

G

 

s

 

i

 

j

 

h

 

f

 

a

 

b

 

S

 

V

 

U

DATA

95

80

80

75
75
75

50

b

 

1

 

0

 

@

 

Z

S#a# 0 

[

SD

]

 

0

.

95

 

_

DATA SET=

1

.

80

 

_

DATA SET=

2

.

_

DATA SET=

3

.

75

 

H

 

3

 

_

DATA SET=

4

.

50

 

_

DATA SET=

5

.

x

 

=

t

 

R

x

=

75

.

71428571

σ

x

 

=

t

 

p

σ

x

=

12

.

37179148

n

 

=

t

 

c

n

=

7

.

Σ

x

 

=

t

 

g

Σ

x

=

530

.

Σ

x

2

 

=

t

 

o

Σ

x

2

=

41

'

200

.

sx

 

=

t

 

v

sx

=

13

.

3630621

sx

2

 

=

A

 

=

sx

2

=

178

.

5714286

(95 

 

x

– )

⎯  ×

 10 

+

 50 

=

 

sx

(

 

95

 

&

 

;

 

R

 

)

 

z

 

;

 

v

 

k

 

10

 

+

 

50

 

=

64

.

43210706

24 

N

 

(

t, P

(

, Q

(

, R

(

)

DATA

x

F

20

30

40

50

60

70

80

90

1

3

5

8

13

10

7

3

b

 

1

 

0

 

@

 

Z

S#a# 0 

[

SD

]

0

.

20

 

H

 

1

 

_

DATA SET=

1

.

30

 

H

 

3

 

_

DATA SET=

2

.

40

 

H

 

5

 

_

DATA SET=

3

.

50

 

H

 

8

 

_

DATA SET=

4

.

60

 

H

 

13

 

_

DATA SET=

5

.

70

 

H

 

10

 

_

DATA SET=

6

.

80

 

H

 

7

 

_

DATA SET=

7

.

90

 

H

 

3

 

_

DATA SET=

8

.

x

– 

=

 

t

 

R

x

=

60

.

4

σ

x

 

=

 

t

 

p

σ

x

=

16

.

48757108

x

 

=

 35 

 

P(t)

?

N

 

2

 

35

 

N

 

1

 

)

 

=

0

.

061713

x

 

=

 75 

 

Q(t)

?

N

 

3

 

75

 

N

 

1

 

)

 

=

0

.

312061

x

 

=

 85 

 

R(t)

?

N

 

4

 

85

 

N

 

1

 

)

 

=

0

.

067845

t

 

=

 1.5 

 

R(t)

?

N

 

4

 

1

.

5

 

)

 

=

0

.

066807

25 

b

 

(CPLX)

(12 

 6

i

+

 (7 

+

 15

i

 (11 

+

 4

i

=

 

b

 

3

12

 

-

 

6

 

O

 

+

 

7

 

+

 

15

 

O

-

 

(

 

11

 

+

 

4

 

O

 

)

 

=

8

.

+5

.

K

×

 (7 

 9

i

×

 (

+

 8

i

=

 

6

 

k

 

(

 

7

 

-

 

9

 

O

 

)

 

k

 

(

 

S

 

5

 

+

 

8

 

O

 

)

 

=

222

.

+606

.

K

16 

×

 (sin 30° 

+

 

i

cos 30°) 

÷

 (sin 60° 

+

 

i

cos 60°) 

=

  

16

 

k

 

(

 

v

 

30

 

+

 

O

 

$

 

30

 

)

 

z

 

(

 

v

 

60

 

+

 

O

 

$

 

60

 

)

 

=

13

.

85640646

+8

.

K

y

x

A

B

r

r

2

θ

1

θ

2

r

1

θ

r

1

 

=

 8, 

θ

1

 

=

 70°

r

2

 

=

 12, 

θ

2

 

=

 25°

 

r

 

=

 ?, 

θ

 

=

 ?°

@

 

u

 

8

 

Q

 

70

 

+

 

12

 

Q

 

25

 

=

18

.

5408873

42

.

76427608

+

 

i

 

r

 

=

 ?, 

θ

 

=

 ?°

@

 

E

 

1

 

+

 

O

 

=

1

.

+1

.

K

@

 

u

1

.

414213562

45

.

(2 

 3

i

)

2

 

=

@

 

E

 

(

 

2

 

-

 

3

 

O

 

)

 

A

 

=

-

5

.

-

12

.

K

1

+

 

i

 

=

 

(

 

1

 

+

 

O

 

)

 

@

 

Z

=

0

.

5

-

0

.

5

K

CONJ(5 

+

 2

i

=

 

N

 

1

 

(

 

5

 

+

 

2

 

O

 

)

=

5

.

-

2

.

K

EL-W506
EL-W516
EL-W546

sin 45 

=

v

 

45

 

=

 

Q

2

 

  2

U

0

.

707106781

2cos

1

 0.5  [rad] 

=

@

 

J

 

0

 

1

 

2

 

@

 

^

 

0

.

5

 

=

 

2

J

 

3

U

2

.

094395102

3

 

u

 

d

@

 

Z

 

0

.

 3(5 

+

 2) 

=

3

 

(

 

5

 

+

 

2

 

)

 

=

21

.

 3 

×

 5 

+

 2 

=

3

 

k

 

5

 

+

 

2

 

=

 

17

.

 (5 

+

 3) 

×

 2 

=

(

 

5

 

+

 

3

)

 

k

 

2

 

=

16

.

 

@

 

u

21

.

 

d

17

.

 

d

16

.

 

u

17

.

4

 

+

 

&

 

k

 

z

 

(

 

)

 

S

 

`

45 

+

 285 

÷

 3 

=

j

 

45

 

+

 

285

 

z

 

3

 

=

140

.

(18 

+

 6) 

÷

 (15 

 8) 

=

(

 

18

 

+

 

6

 

)

 

z

 

(

 

15

 

&

 

8

 

=

 

3

 

7

42 

×

 

+

 120 

=

42

 

k

 

S

 

5

 

+

 

120

 

=

-

90

(5 

×

 10

3

÷

 (4 

×

 10

3

=

5

 

`

 

3

 

z

 

4

 

`

 

S

 

3

 

=

1

'

250

'

000

.

5

34 + 57 

=

34

 

+

 

57

 

=

91

.

45 + 57 

=

45

 

=

102

.

68 × 25 

=

68

 

k

 

25

 

=

1

'

700

.

68 × 40 

=

40

 

=

 

2

'

720

.

6

  

v

 

$

 

t

 

w

 

^

 

y

 

s

 

H

 

>

 

i

 

l

 

O

 

"

 

V

 

Y

 

Z

 

A

 

1

 

*

 

m

 

D

 

q

 

B

 

e

 

c

 

a

 

W

@

 

P

 

0

0

.

sin 60  [°] 

=

j

 

v

 

60

 

=

Q

3

2

U

0

.

866025403

cos 

π

4

 [rad] 

=

@

 

J

 

0

 

1

 

$

 

@

 

s

 

W

 

4

 

=

Q

2

2

U

0

.

707106781

tan

1 [g] 

=

@

 

J

 

0

 

2

 

@

 

y

 

1

 

=

50

.

@

 

J

 

0

 

0

(cosh 1.5 

+

 sinh 1.5)

2

 

=

 

j

 

(

 

H

 

$

 

1

.

5

 

+

 

H

 

v

 

1

.

5

 

)

 

A

 

=

20

.

08553692

 

5

tanh

 ⎯ =

 

7

@

 

>

 

t

 

(

 

5

 

z

 

7

 

)

 

=

 

0

.

895879734

ln 20 

=

i

 

20

 

=

2

.

995732274

log 50 

=

l

 

50

 

=

 

1

.

698970004

log

2

 16384 

=

@

 

O

 

2

 

r

 

16384

 

=

14

.

o

@

 

O

 

2

 

H

 

16384

 

)

 

=

14

.

e

3

 

=

@

 

"

 

3

 

=

20

.

08553692

÷

 e 

=

1

 

z

 

;

 

V

 

=

0

.

367879441

10

1.7

 

=

@

 

Y

 

1

.

7

 

=

50

.

11872336

 1 

1

⎯ + ⎯ =

 6 

7

6

 

@

 

Z

 

+

 

7

 

@

 

Z

 

=

13

42

U

0

.

309523809

d

(

x

4

 

 0.5

x

3

 

+

 6

x

2

)

dx

@

 

G

 

;

 

X

 

m

 

4

 

r

 

&

 

0

.

5

 

;

 

X

 

@

 

1

 

+

 

6

 

;

 

X

 

A

 

x

 = 2

d

x

 = 0.00002

r

 

2

 

=

50.

 

x

 = 3

d

x

 = 0.001

l

 

l

 

N

 

3

 

H

 

0

.

001

 

=

130.5000029

o

@

 

G

 

;

 

X

 

m

 

4

 

&

 

0

.

5

 

;

 

X

 

@

 

1

 

+

 

6

 

;

 

X

 

A

 

H

 

2

 

)

 

=

50.

l

 

l

 

N

 

3

 

H

 

0

.

001

 

=

130.5000029

8

 

I

5

x

 = 1

(

x

 + 

2)

j

 

@

 

I

 

1

 

r

 

5

 

r

 

;

 

X

 

+

 

2

 

n

 

=

 1

=

25

.

n

 

=

 2

l

 

l

 

H

 

2

 

=

15

.

o

j

 

@

 

I

 

;

 

X

 

+

 

2

 

H

 

1

 

H

 

5

 

)

 

=

25

.

l

 

l

 

H

 

2

 

=

15

.

9

 

]

90° 

 [rad]

j

 

90

 

@

 

]

 

1

 

⎯ 

J

 

2

 [g]

@

 

]

100

.

 [°]

@

 

]

90

.

sin

1

 0.8 = [°]

@

 

w

 

0

.

8

 

=

53

.

13010235

 [rad]

@

 

]

0

.

927295218

 [g]

@

 

]

59

.

03344706

 [°]

@

 

]

53

.

13010235

10 

;

 

t

 

x

 

m

 

M

 

<

 

[

 

]

 

T

 

X

 

I

 

J

 

K

 

L

×

 2 

 M

j

 

8

 

k

 

2

 

x

 

M

 

16

.

24 

÷

 (8 × 2) 

=

24

 

z

 

;

 

M

 

=

 

1

 

2

(8 × 2) × 5 

=

;

 

M

 

k

 

5

 

=

80

.

 M

j

 

x

 

M

0

.

 $150 

×

 3 

 M

1

+

) $250: M

1

 

+

 250 

 M

2

) M

2

 

×

 5%


 M 

=

150

 

k

 

3

 

m

450

.

250

 

m

250

.

t

 

M

 

k

 

5

 

@

 

a

 

@

 

M

35

.

t

 

M

665

.

$1 

=

 ¥110 (110 

 Y)

110

 

x

 

Y

110

.

¥26,510 

=

 $?

26510

 

z

 

;

 

Y

 

=

241

.

$2,750 

=

 ¥?

2750

 

k

 

;

 

Y

 

=

302

'

500

.

=

 3 cm (r 

 Y)

3

 

x

 

Y

3

.

π

r

2

 

=

 ?

@

 

s

 

;

 

Y

 

A

 

=

 

 

U

28.27433388

 24

⎯ 

+

 6

 

=

 

  2

  5 …(A)

24

 

z

 

(

 

4

 

+

 

6

 

)

 

=

 

2

 

5

×

 (A) 

+

 60 

÷

 (A) 

=

3

 

k

 

;

 

<

 

+

 

60

 

z

 

;

 

<

 

=

 

1

32 

 

5

π

r

2

 

 F1

=

 3 cm (r 

 Y)

4

3

 

V

 

=

 ?

@

 

s

 

;

 

Y

 

A

 

x

 

[

j

F1

3

 

x

 

Y

 

3

.

t

 

[

 

k

 

4

 

z

 

3

 

=

 

U

 

37

.

69911184

sinh

1

 

 D1

x

 

I

 

@

 

>

 

v

sinh

1

 0.5 

=

I

 

0

.

5

 

=

0

.

481211825

DATA

x

y

2

2

12

21
21
21

15

5

5

24

40
40
40

25

b

 

1

 

1

 

@

 

Z

S#a# 1 

[

LINE

]

0

.

2

 

H

 

5

 

_

DATA SET=

1

.

_

DATA SET=

2

.

12

 

H

 

24

 

_

DATA SET=

3

.

21

 

H

 

40

 

H

 

3

 

_

DATA SET=

4

.

15

 

H

 

25

 

_

DATA SET=

5

.

a

 

=

t

 

a

a

=

1

.

050261097

b

 

=

t

 

b

b

=

1

.

826044386

r

 

=

t

 

f

r

=

0

.

995176343

sx

 

=

t

 

v

sx

=

8

.

541216597

sy

 

=

t

 

G

sy

=

15

.

67223812

x

 

=

 3 

 

y

´

 

=

 ?

3

 

@

 

U

 

3

y

´

6

.

528394256

y

 

=

 46 

 

x

´

 

=

 ?

46

 

@

 

V

46

x

´

24

.

61590706

DATA

x

y

12

8

5

23

15

41

13

2

200

71

b

 

1

 

2

 

@

 

Z

S#a# 2 

[

QUAD

]

0

.

12

 

H

 

41

 

_

DATA SET=

1

.

8

 

H

 

13

 

_

DATA SET=

2

.

5

 

H

 

2

 

_

DATA SET=

3

.

23

 

H

 

200

 

_

DATA SET=

4

.

15

 

H

 

71

 

_

DATA SET=

5

.

a

 

=

t

 

a

a

=

5

.

357506761

b

 

=

t

 

b

b

=

-

3

.

120289663

c

 

=

t

 

S

c

=

0

.

503334057

x

 

=

 10 

 

y

´

 

=

 ?

10

 

@

 

U

 

10

y

´

24

.

4880159

y

 

=

 22 

 

x

´

 

=

 ?

22

 

@

 

V

22

x

´

1

:

2

:

9

.

63201409

-

3

.

432772026

22 

_

 

H

 

u

 

d

 

#

DATA

20

30

40

40

50

DATA

30

45

45

45

60

b

 

1

 

0

 

@

 

Z

S#a# 0 

[

SD

]

 

0

.

20

 

_

DATA SET=

1

.

30

 

_

DATA SET=

2

.

40

 

H

 

2

 

_

DATA SET=

3

.

50

 

_

DATA SET=

4

.

d

 

@

 

#

DATA SET=

3

.

d

 

d

 

d

 

45

 

_

X:

45

.

3

 

_

F:

3

.

d

 

60

 

_

X:

60

.

j

23 

x

– 

=

 

Σ

x

n

σ

x

 

=

 

Σ

x

2

 

 

nx

2

n

sx

 

=

 

Σ

x

2

 

 

nx

2

n

 

 1

Σ

x

 

=

 

x

1

 

+

 

x

2

 

+

 … 

+

 

x

n

Σ

x

2

 

=

 

x

1

2

 

+

 

x

2

2

 

+

 … 

+

 

x

n

2

y

– 

=

 

Σ

y

n

σ

y

 

=

 

Σ

y

2

 

 

ny

2

n

sy

 

=

 

Σ

y

2

 

 

ny

2

n

 

 1

Σ

xy

 

=

 

x

1

y

1

 

+

 

x

2

y

2

 

+

 … 

+

 

x

n

y

n

Σ

y

 

=

 

y

1

 

+

 

y

2

 

+

 … 

+

 

y

n

Σ

y

2

 

=

 

y

1

2

 

+

 

y

2

2

 

+

 … 

+

 

y

n

2

Summary of Contents for EL-516 Operation

Page 1: ...e conversion angular unit conversion editor change J 2 0 or J 2 1 and memory clear P 1 0 Equations that have one result require an additional eleven characters worth of memory to store in order to hold the result In addition to the amount of memory needed to store an equation the WriteView editor will require a certain amount for the sake of display Equations also include calculation ending instru...

Page 2: ...e conversion angular unit conversion editor change J 2 0 or J 2 1 and memory clear P 1 0 Equations that have one result require an additional eleven characters worth of memory to store in order to hold the result In addition to the amount of memory needed to store an equation the WriteView editor will require a certain amount for the sake of display Equations also include calculation ending instru...

Page 3: ...e conversion angular unit conversion editor change J 2 0 or J 2 1 and memory clear P 1 0 Equations that have one result require an additional eleven characters worth of memory to store in order to hold the result In addition to the amount of memory needed to store an equation the WriteView editor will require a certain amount for the sake of display Equations also include calculation ending instru...

Page 4: ...e conversion angular unit conversion editor change J 2 0 or J 2 1 and memory clear P 1 0 Equations that have one result require an additional eleven characters worth of memory to store in order to hold the result In addition to the amount of memory needed to store an equation the WriteView editor will require a certain amount for the sake of display Equations also include calculation ending instru...

Page 5: ...rst press j N 2 You can then enter new values for the list size 3 When you have finished making changes press j to exit the list entry screen 4 Press N 4 and select a memory L1 L4 to store the newly created list in Using Lists in Calculations Lists stored in memories L1 L4 can be used in arithmetic calculations and calculations that use x3 x2 and x 1 You can also use the following list specific fu...

Page 6: ...rst press j N 2 You can then enter new values for the list size 3 When you have finished making changes press j to exit the list entry screen 4 Press N 4 and select a memory L1 L4 to store the newly created list in Using Lists in Calculations Lists stored in memories L1 L4 can be used in arithmetic calculations and calculations that use x3 x2 and x 1 You can also use the following list specific fu...

Page 7: ...rst press j N 2 You can then enter new values for the list size 3 When you have finished making changes press j to exit the list entry screen 4 Press N 4 and select a memory L1 L4 to store the newly created list in Using Lists in Calculations Lists stored in memories L1 L4 can be used in arithmetic calculations and calculations that use x3 x2 and x 1 You can also use the following list specific fu...

Page 8: ...rst press j N 2 You can then enter new values for the list size 3 When you have finished making changes press j to exit the list entry screen 4 Press N 4 and select a memory L1 L4 to store the newly created list in Using Lists in Calculations Lists stored in memories L1 L4 can be used in arithmetic calculations and calculations that use x3 x2 and x 1 You can also use the following list specific fu...

Page 9: ...34 h 2me m2 s 1 52 atm Pa 17 R m 1 35 γp s 1 T 1 18 Φ0 Wb 36 KJ Hz V 1 x L 01 44 01 in cm 16 kg lb 31 calIT J 02 cm in 17 F C 32 J calIT 03 ft m 18 C F 33 hp W 04 m ft 19 gal US L 34 W hp 05 yd m 20 L gal US 35 ps W 06 m yd 21 gal UK L 36 W ps 07 mi km 22 L gal UK 37 kgf cm2 Pa 08 km mi 23 fl oz US mL 38 Pa kgf cm2 09 n mi m 24 mL fl oz US 39 atm Pa 10 m n mi 25 fl oz UK mL 40 Pa atm 11 acre m2 26...

Page 10: ...34 h 2me m2 s 1 52 atm Pa 17 R m 1 35 γp s 1 T 1 18 Φ0 Wb 36 KJ Hz V 1 x L 01 44 01 in cm 16 kg lb 31 calIT J 02 cm in 17 F C 32 J calIT 03 ft m 18 C F 33 hp W 04 m ft 19 gal US L 34 W hp 05 yd m 20 L gal US 35 ps W 06 m yd 21 gal UK L 36 W ps 07 mi km 22 L gal UK 37 kgf cm2 Pa 08 km mi 23 fl oz US mL 38 Pa kgf cm2 09 n mi m 24 mL fl oz US 39 atm Pa 10 m n mi 25 fl oz UK mL 40 Pa atm 11 acre m2 26...

Page 11: ...34 h 2me m2 s 1 52 atm Pa 17 R m 1 35 γp s 1 T 1 18 Φ0 Wb 36 KJ Hz V 1 x L 01 44 01 in cm 16 kg lb 31 calIT J 02 cm in 17 F C 32 J calIT 03 ft m 18 C F 33 hp W 04 m ft 19 gal US L 34 W hp 05 yd m 20 L gal US 35 ps W 06 m yd 21 gal UK L 36 W ps 07 mi km 22 L gal UK 37 kgf cm2 Pa 08 km mi 23 fl oz US mL 38 Pa kgf cm2 09 n mi m 24 mL fl oz US 39 atm Pa 10 m n mi 25 fl oz UK mL 40 Pa atm 11 acre m2 26...

Page 12: ...34 h 2me m2 s 1 52 atm Pa 17 R m 1 35 γp s 1 T 1 18 Φ0 Wb 36 KJ Hz V 1 x L 01 44 01 in cm 16 kg lb 31 calIT J 02 cm in 17 F C 32 J calIT 03 ft m 18 C F 33 hp W 04 m ft 19 gal US L 34 W hp 05 yd m 20 L gal US 35 ps W 06 m yd 21 gal UK L 36 W ps 07 mi km 22 L gal UK 37 kgf cm2 Pa 08 km mi 23 fl oz US mL 38 Pa kgf cm2 09 n mi m 24 mL fl oz US 39 atm Pa 10 m n mi 25 fl oz UK mL 40 Pa atm 11 acre m2 26...

Page 13: ...enendone il potenziale impatto negativo sull ambiente e sulla salute umana che potrebbe derivare da un inadeguata gestione dei rifiuti 2 In paesi che non fanno parte dell UE Se si desidera eliminare il presente prodotto contattare le autorità locali e informarsi sul metodo di smaltimento corretto Per la Svizzera Le apparecchiature elettriche o elettroniche usate possono essere restituite gratuitam...

Page 14: ...enendone il potenziale impatto negativo sull ambiente e sulla salute umana che potrebbe derivare da un inadeguata gestione dei rifiuti 2 In paesi che non fanno parte dell UE Se si desidera eliminare il presente prodotto contattare le autorità locali e informarsi sul metodo di smaltimento corretto Per la Svizzera Le apparecchiature elettriche o elettroniche usate possono essere restituite gratuitam...

Page 15: ...enendone il potenziale impatto negativo sull ambiente e sulla salute umana che potrebbe derivare da un inadeguata gestione dei rifiuti 2 In paesi che non fanno parte dell UE Se si desidera eliminare il presente prodotto contattare le autorità locali e informarsi sul metodo di smaltimento corretto Per la Svizzera Le apparecchiature elettriche o elettroniche usate possono essere restituite gratuitam...

Page 16: ...enendone il potenziale impatto negativo sull ambiente e sulla salute umana che potrebbe derivare da un inadeguata gestione dei rifiuti 2 In paesi che non fanno parte dell UE Se si desidera eliminare il presente prodotto contattare le autorità locali e informarsi sul metodo di smaltimento corretto Per la Svizzera Le apparecchiature elettriche o elettroniche usate possono essere restituite gratuitam...

Reviews: