1
J
(FSE)
100000
÷
3
=
[NORM1]
j
100000
z
3
=
U
U
33
'
333
.
33333
→
[FIX: TAB 2]
J
1
0
2
33
'
333
.
33
→
[SCI: SIG 2]
J
1
1
2
3
.
3
b
04
→
[ENG: TAB 2]
J
1
2
2
33
.
33
b
03
→
[NORM1]
J
1
3
33
'
333
.
33333
2
J
(EDITOR)
→
[APPROX.]
j
J
2
0
1
0
.
1
÷
2
=
1
z
2
=
0.5
→
[EXACT(a/b,
r
,
p
)
]
J
2
0
0
0
.
1
÷
2
=
1
z
2
=
1
2
3
J
(RECURRING DECIMAL)
→
[ON]
j
J
5
1
0
.
611
÷
495
=
611
z
495
=
116
1
495
U
611
495
U
1
.
234
U
1
.
234343434
U
116
1
495
o
611
z
495
=
1
.
2
(
34
)
U
1
.
234343434
U
1
m
116
m
495
U
611
m
495
U
1
.
2
(
34
)
→
[OFF]
j
J
5
0
0
.
4
U
2
3
+ =
5
4
j
2
W
5
r
+
W
3
r
4
=
3
1
20
U
23
20
U
1
.
15
U
3
1
20
P
3
×
P
5
=
*
3
r
k
*
5
=
H
15
U
3
.
872983346
sin 45
=
v
45
=
Q
2
2
U
0
.
707106781
5
u
d
@
Z
0
.
1
3(5
+
2)
=
3
(
5
+
2
)
=
21
.
2
3
×
5
+
2
=
3
k
5
+
2
=
17
.
3
(5
+
3)
×
2
=
(
5
+
3
)
k
2
=
16
.
→
1
@
u
21
.
→
2
d
17
.
→
1
u
21
.
→
3
@
d
16
.
6
+
&
k
z
(
)
S
`
45
+
285
÷
3
=
j
45
+
285
z
3
=
140
.
18
+
6
=
15
-
8
(
18
+
6
)
z
(
15
&
8
=
3
3
7
42
×
-
5
+
120
=
42
k
S
5
+
120
=
-
90
.
(5
×
10
3
)
÷
(4
×
10
-
3
)
=
5
`
3
z
4
`
S
3
=
1
'
250
'
000
.
7
34
+
57
=
34
+
57
=
91
.
45 + 57
=
45
=
102
.
68 × 25
=
68
k
25
=
1
'
700
.
68 × 40
=
40
=
2
'
720
.
8
<
>
6789=
j
6789
=
6
'
789
.
;
>
6
.
789
b
03
;
>
0
.
006789
b
06
;
<
;
<
6789
.
b
00
;
<
6789000
.
b
-03
9
v
$
t
w
^
y
s
H
>
i
l
O
"
V
Y
Z
A
1
m
*
D
q
B
e
c
a
W
sin 60 [°]
=
j
J
0
0
v
60
=
Q
3
2
U
0
.
866025403
cos
p
4
[rad]
=
J
0
1
$
s
W
4
=
Q
2
2
U
0
.
707106781
tan
-
1
1 [g]
=
J
0
2
@
y
1
=
50
.
J
0
0
(cosh 1.5
+
sinh 1.5)
2
=
j
(
H
$
1
.
5
+
H
v
1
.
5
)
A
=
20
.
08553692
5
tanh
-
1
=
7
@
>
t
(
5
z
7
)
=
0
.
895879734
ln 20
=
i
20
=
2
.
995732274
log 50
=
l
50
=
1
.
698970004
log
2
16384
=
@
O
2
r
16384
=
14
.
o
@
O
2
H
16384
)
=
14
.
e
3
=
@
"
3
=
20
.
08553692
1
÷
e
=
1
z
;
V
=
0
.
367879441
10
1.7
=
@
Y
1.7
=
50
.
11872336
1
1
+ =
6
7
6
@
Z
+
7
@
Z
=
13
42
U
0
.
309523809
8
-
2
-
3
4
×
5
2
=
8
m
S
2
r
&
3
m
4
r
k
5
A
=
63
-
2024
64
U
129599
-
64
U
-
2
'
024
.
984375
o
8
m
S
2
&
3
m
4
k
5
A
=
-
2
'
024
.
984375
U
-
2024
m
63
m
64
U
-
129599
m
64
8
3
=
8
@
1
=
512
.
p
49
-
4
p
81
=
*
49
r
&
4
@
D
81
=
4
.
o
*
49
&
4
@
D
81
=
4
.
3
p
27
=
@
q
27
=
3
.
4!
=
4
@
B
=
24
.
10
P
3
=
10
@
e
3
=
720
.
5
C
2
=
5
@
c
2
=
10
.
500
×
25%
=
500
k
25
@
a
125
.
120
÷
400
=
?%
120
z
400
@
a
30
.
500
+
(500
×
25%)
=
500
+
25
@
a
625
.
400
-
(400
×
30%)
=
400
&
30
@
a
280
.
|
5
-
9
|
=
@
W
5
&
9
=
4
.
q
=
sin
-
1
x
,
q
=
tan
-
1
x
q
=
cos
-
1
x
DEG
-
90
≤
q
≤
90
0
≤
q
≤
180
RAD
- p
2
≤
q
≤
p
2
0
≤
q
≤
p
GRAD
-
100
≤
q
≤
100
0
≤
q
≤
200
10
]
90°
→
[rad]
j
90
@
]
1
J
2
→
[g]
@
]
100
.
→
[°]
@
]
90
.
11
;
t
x
m
M
<
I
J
K
8
×
2 M
j
8
k
2
x
M
16
.
24
÷
(8 × 2)
=
24
z
;
M
=
1
1
2
(8 × 2) × 5
=
;
M
k
5
=
80
.
0 M
j
x
M
0
.
$150
×
3 M
1
+
) $250: M
1
+
250 M
2
-
) M
2
×
5%
–
M
=
150
k
3
m
450
.
250
m
250
.
t
M
k
5
@
a
@
M
35
.
t
M
665
.
24
4
+
6
=
2
2
5
…(A)
24
z
(
4
+
6
)
=
2
2
5
3
×
(A)
+
60
÷
(A)
=
3
k
;
<
+
60
z
;
<
=
1
32
5
sinh
-
1
D1
x
I
@
>
v
sinh
-
1
0.5
=
I
0.5
=
0
.
481211825
12
6
+
4
=
ANS
j
6
+
4
=
10
.
ANS
+
5
=
+
5
=
15
.
8
×
2
=
ANS
8
k
2
=
16
.
ANS
2
=
A
=
256
.
13
W
k
1 4
3
+ =
2 3
j
3
@
k
1
d
2
r
+
W
4
d
3
=
5
4
6
U
29
6
U
4.833333333
o
3
W
1
W
2
+
4
W
3
=
*
4
m
5
m
6
U
29
m
6
U
4.833333333
* 4
m
5
m
6 =
5
4
6
14
z
r
g
h
/
d
n
4
p
x
C
DEC (25)
→
BIN
j
@
/
25
@
z
BIN
11001
HEX (1AC)
@
h
1AC
→
BIN
@
z
BIN
110101100
→
PEN
@
r
PEN
3203
→
OCT
@
g
OCT
654
→
DEC
@
/
428
.
BIN (111)
→
NEG
@
z
d
111
=
BIN
1111111001
1011 AND 101
=
[BIN]
@
z
1011
4
101
=
BIN
1
5A OR C3
=
[HEX]
@
h
5A
p
C3
=
HEX
DB
NOT 10110
=
[BIN]
@
z
n
10110
=
BIN
1111101001
24 XOR 4
=
[OCT]
@
g
24
x
4
=
OCT
20
B3 XNOR 2D
=
[HEX]
@
h
B3
C
2D
=
HEX
FFFFFFFF
61
→
DEC
@
/
-
159
.
15
[
:
7°31’49.44”
→
[10]
j
7
[
31
[
49.44
@
:
663
7
1250
123.678
→
[60]
123.678
@
:
123(40
q
40
.
8
"
3h 30m 45s +
6h 45m 36s = [60]
3
[
30
[
45
+
6
[
45
[
36
=
10(16
q
21
."
1234°56’12” +
0°0’34.567” = [60]
1234
[
56
[
12
+
0
[
0
[
34.567
=
1234(56
q
47
."
3h 45m – 1.69h
= [60]
3
[
45
&
1.69
=
@
:
2(3
q
36
."
sin 62°12’24” = [10]
v
62
[
12
[
24
=
0
.
884635235
16
u
E
H
(
x
= 6
y
= 4
→
(
r
=
q
= [°]
j
6
H
4
@
u
r
:
{
:
7
.
211102551
33
.
69006753
(
r
= 14
q
= 36 [°]
→
(
x
=
y
=
14
H
36
@
E
X
:
Y
:
11
.
32623792
8
.
228993532
17
n
→
[FIX, TAB
=
1]
j
J
1
0
1
0
.
0
5
÷
9
=
ANS
5
z
9
=
5
9
U
0
.
6
ANS
×
9
=
k
9
=
*
1
5
.
0
5
z
9
=
5
9
U
0
.
6
→
[MDF]
@
n
3
5
ANS
×
9
=
k
9
=
*
2
2
5
5
U
U
5
.
4
→
[NORM1]
J
1
3
5
.
4
*
1
5
9
×
9 = 5.5555555555555
×
10
-
1
×
9
*
2
3
5
×
9 = 0.6 × 9
18
6
23 ÷ 5
=
j
23
@
6
5
=
Q: 4
.
R: 3
.
9
.5 ÷ 4
=
9.5
@
6
4
=
Q: 2
.
R: 1
.
5
-32 ÷ (-5)
=
S
32
@
6
S
5
=
Q: 6
.
R: -2
.
19
5
12210
=
j
12210
=
12
'
210
.
@
5
2
×
3
×
5
×
11
×
37
@
5
12
'
210
.
1234567
=
1234567
=
1
'
234
'
567
.
@
5
127
×(
9721
)
20
b
(STAT)
INS-D
DATA
20
30
40
40
50
↓
DATA
30
40
40
45
45
45
60
b
1
0
X
FRQ
1
z
20
e
30
e
40
H
2
e
50
e
X
FRQ
4
5
z
3
4
z5
2
1
@
u
@
y
d
d
;
INS-D
45
H
3
e
60
e
X
FRQ
45
6
z
3
4
5
3
1
21
b
(STAT)
_
8
V
U
DATA
95
80
80
75
75
75
50
b
1
0
@
Z
_
95
e
80
H
2
e
75
H
3
e
50
e
X
FRQ
75
5
z
3
4
5
3
1
_
Stat 0
[
SD
]
0
.
;
8
0
d
d
d
(95
-
x
– )
×
10
+
50
=
sx
j
(
95
&
;
8
2
1
)
z
;
8
2
2
k
10
+
50
=
64.43210706
DATA
x
y
2
2
12
21
21
21
15
5
5
24
40
40
40
25
b
1
1
2
H
5
H
2
e
12
H
24
e
21
H
40
H
3
e
15
H
25
e
X
21
15
Y
4
25
3
4
5
3
1
FRQ
_
Stat 1
[
a+bx
]
0
.
;
8
1
j
;
8
0
d
d
d
d
d
x
=
3
→
y
´
=
?
j
3
@
U
3
y
´
6
.
528394256
y
=
46
→
x
´
=
?
46
@
V
46
x
´
24
.
61590706
DATA
x
y
12
8
5
23
15
41
13
2
200
71
b
1
2
12
H
41
e
8
H
13
e
5
H
2
e
23
H
200
e
15
H
71
e
23
15
2
71
4
5
6
1
1
X
Y
FRQ
_
Stat 2
[
a+bx+cx
2
]
0
.
;
8
1
d
x
=
10
→
y
´
=
?
j
10
@
U
10
y
´
24
.
4880159
y
=
22
→
x
´
=
?
22
@
V
22
x
´
1
:
2
:
9
.
63201409
-
3
.
432772026
22
;
8
5
5
22
x
´
2
-
3
.
432772026
22
x
–
=
S
x
n
s
x
=
S
x
2
-
nx
–
2
n
sx
=
S
x
2
-
nx
–
2
n
-
1
y
–
=
S
y
n
s
y
=
S
y
2
-
ny
–
2
n
sy
=
S
y
2
-
ny
–
2
n
-
1
23
b
(TABLE)
x
2
+ 1
b
2
;
X
A
+
1
e
e
-2.
X_Start: -2
X_Step: 1
S
2
e
1
e
d
d
d
d
2.
x
2
+ 1
b
2
;
X
A
+
1
e
1
2
3
2
5
1
6
7
8
1.
x
+ 5
;
X
+
5
e
X_Start: 1
X_Step: 1
1
e
1
e
24
Function
Fonction
Funktion
Función
Funzioni
Funktion
Funktio
Dynamic range
Plage dynamique
zulässiger Bereich
Rango dinámico
Campi dinamici
Definitionsområde
Dynaaminen ala
sin
x
, cos
x
, tan
x
DEG: |
x
|
<
10
10
(tan
x
: |
x
|
≠
90(2n
-
1))*
RAD: |
x
|
<
p
180
×
10
10
(tan
x
: |
x
|
≠
p
2
(2n
-
1))*
GRAD: |
x
|
<
10
9
×
10
10
(tan
x
: |
x
|
≠
100(2n
-
1))*
sin
–1
x
, cos
–1
x
|
x
|
≤
1
tan
–1
x
,
3
P
x
|
x
|
<
10
100
ln
x
, log
x
, log
a
x
10
–99
≤
x
<
10
100
, 10
–99
≤
a
<
10
100
(
a
≠
1)
y
x
•
y
>
0:
-
10
100
<
x
log
y
<
100
•
y
=
0: 0
<
x
<
10
100
•
y
<
0:
x
=
n
(0
<
|
x
|
<
1:
1
x
=
2n
-
1,
x
≠
0)*,
-
10
100
<
x
log |
y
|
<
100
x
P
y
•
y
>
0:
-
10
100
<
1
x
log
y
<
100 (
x
≠
0)
•
y
=
0: 0
<
x
<
10
100
•
y
<
0:
x
=
2n
-
1
(0
<
|
x
|
<
1:
1
x
=
n,
x
≠
0)*,
-
10
100
<
1
x
log |
y
|
<
100
e
x
-
10
100
<
x
≤
230.2585092
10
x
-
10
100
<
x
<
100
sinh
x
, cosh
x
, tanh
x
|
x
|
≤
230.2585092
sinh
–1
x
|
x
|
<
10
50
cosh
–1
x
1
≤
x
<
10
50
tanh
–1
x
|
x
|
<
1
x
2
|
x
|
<
10
50
x
3
|
x
|
<
2.15443469
×
10
33
P
x
0
≤
x
<
10
100
x
–1
|
x
|
<
10
100
(
x
≠
0)
n!
0
≤
n
≤
69*
n
P
r
0
≤
r
≤
n
≤
9999999999*
n!
(n
-
r)!
<
10
100
n
C
r
0
≤
r
≤
n
≤
9999999999*
0
≤
r
≤
69
n!
(n
-
r)!
<
10
100
↔
DEG, D°M’S
0°0’0.00001”
≤
|
x
|
<
10000°
x
,
y
→
r
,
q
x
2
+
y
2
<
10
100
r
,
q
→
x
,
y
0
≤
r
<
10
100
DEG: |
q
|
<
10
10
RAD: |
q
|
<
p
180
×
10
10
GRAD: |
q
|
<
10
9
×
10
10
DRG
►
DEG
→
RAD, GRAD
→
DEG: |
x
|
<
10
100
RAD
→
GRAD: |
x
|
<
p
2
×
10
98
n
GCD
n
,
n
LCM
n
0
<
n
<
10
10
*
R.Int(m, n)
| m |
≤
9999999999*
| n |
≤
9999999999*
m
<
n, n
-
m
<
10
10
→
DEC
→
BIN
→
PEN
→
OCT
→
HEX
AND
OR
XOR
XNOR
DEC: |
x
|
≤
9999999999
BIN: 1000000000
≤
x
≤
1111111111
0
≤
x
≤
111111111
PEN: 2222222223
≤
x
≤
4444444444
0
≤
x
≤
2222222222
OCT: 4000000000
≤
x
≤
7777777777
0
≤
x
≤
3777777777
HEX: FDABF41C01
≤
x
≤
FFFFFFFFFF
0
≤
x
≤
2540BE3FF
NOT
BIN: 1000000000
≤
x
≤
1111111111
0
≤
x
≤
111111111
PEN: 2222222223
≤
x
≤
4444444444
0
≤
x
≤
2222222221
OCT: 4000000000
≤
x
≤
7777777777
0
≤
x
≤
3777777777
HEX: FDABF41C01
≤
x
≤
FFFFFFFFFF
0
≤
x
≤
2540BE3FE
NEG
BIN: 1000000001
≤
x
≤
1111111111
0
≤
x
≤
111111111
PEN: 2222222223
≤
x
≤
4444444444
0
≤
x
≤
2222222222
OCT: 4000000001
≤
x
≤
7777777777
0
≤
x
≤
3777777777
HEX: FDABF41C01
≤
x
≤
FFFFFFFFFF
0
≤
x
≤
2540BE3FF
* m, n, r: integer / entier / ganze Zahlen / entero / intero /
heltal / kokonaisluk
ENGLISH
EL-W531TG
EL-W531TH
EL-W535XG
CALCULATION EXAMPLES
EXEMPLES DE CALCUL
ANWENDUNGSBEISPIELE
EJEMPLOS DE CÁLCULO
ESEMPI DI CALCOLO
RÄKNEEXEMPEL
LASKENTAESIMERKKEJÄ
7
.
75
.
7142857
13
.
3630621
178
.
571429
=
=
=
=
12
.
3717915
153
.
061224
530
.
41
'
200
.
=
=
=
=
50
.
75
.
75
.
80
.
=
=
=
=
95
.
=
1
.
050261097
1
.
826044386
0
.
995176343
654
'
836
.
5
.
40
.
=
=
=
5
.
357506761
-3
.
120289663
0
.
503334057
0
.
99994896