background image

C8051F41x

Rev. 0.3

7

4.1.  System Clock Sources

The C8051F410 device installed on the target board features a calibrated programmable internal oscillator which is
enabled as the system clock source on reset. After reset, the internal oscillator operates at a frequency of
191.4 kHz (±2%) by default but may be configured by software to operate at other frequencies. Therefore, in many
applications an external oscillator is not required. However, if you wish to operate the C8051F410 device at a
frequency not available with the internal oscillator, an external crystal may be used. Refer to the C8051F41x data
sheet for more information on configuring the system clock source.

The target board is designed to facilitate the installation of an external crystal. Remove shorting blocks at headers
J9 and J18 and install the crystal at the pads marked Y2. Install a 10 M

 resistor at R4 and install capacitors at

C44 and C43 using values appropriate for the crystal you select. Refer to the C8051F41x data sheet for more
information on the use of external oscillators. The target board also has a 32.768 kHz watch crystal installed to
provide a timebase for the smaRTClock. Jumper J26 may be used to short the XTAL3 and XTAL4 pins if internal
clock mode is desired.

4.2.  Power Options

The C8051F41x Target Board has many power options. This allows the user to exercise the different operating
modes of the C8051F410. The board has 2 voltage regulators. A 3.3 V LDO and a 1.2–5.25 V variable regulator. 

To use the 3.3 V regulator, pin 2–3 of J9 should be shorted and a jumper installed in J10.

To use the variable regulator, pin 1–2 of J19 should be shorted and an output voltage should be selected using J21.
After selecting the appropriate voltage, pin 1–2 of J21 should be shorted to enable the output of the variable
regulator. If the voltage "VAR" is selected, the potentiometer R23 should be adjusted until the desired voltage is
reached. The input to the variable regulator can be obtained from the unregulated 9 V supply or from the 5 V USB
VBUS supply available when using a USB debug adapter.

Note: Before enabling either voltage regulator, the user should check the 4 supply rail selection headers
(J29+J30, J17, J12, J31+32) to ensure the correct voltage is being routed to the correct power pin. An
incorrect jumper setting may permanently damage the board. Note that VDD cannot exceed 2.5 V and is
typically derived from the on-chip regulator. Do not connect the 5.25 or 3.3 V output directly to VDD.

The three power LEDs for VIO, VREG, and VDD indicate if the appropriate supply rail is connected to a power
supply. Check to make sure all supply rails (with exception of VREG if not using the on-chip regulator) are
powered.

For the VIO voltage rail, the user may choose from the 3 V regulator (+3 VD), the variable regulator, or the on-chip
regulator. The selections are marked on the target board silkscreen.

For the VREG on-chip voltage regulator input, the user may choose from the 3 V regulator (+3VD), the 5 V USB
VBUS source obtained from the USB debug adapter (5VEC3), or from the variable regulator (VREG). The
selections are marked on the target board silkscreen.

For VDD, the user may choose the output of the on-chip regulator (VDD_) or the output of the variable regulator
(VREG). 

4.3.  Switches and LEDs

Three switches are provided on the target board. Switch SW1 is connected to the RESET pin of the C8051F410.
Pressing SW1 puts the device into its hardware-reset state. Switch SW2 and SW3 are connected to the
C8051F410’s general purpose I/O (GPIO) pins through headers. Pressing SW2 or SW3 generates a logic low
signal on the port pin. Remove the shorting block from the jumper J5 to disconnect SW2 and/or SW3 from their
associated port pins. The port pin signals are also routed to pins on the J11 I/O connector. See Table 1 for the port
pins and headers corresponding to each switch.

Three LEDs are also provided on the target board. The red LED labeled PWR is used to indicate a power
connection to the target board. The green LEDs labeled with port pin names are connected to the C8051F410’s
GPIO pins through headers. Remove the shorting blocks from the headers to disconnect the LEDs from the port
pins. The port pin signals are also routed to pins on the J1 I/O connector. See Table 1 for the port pins and headers
corresponding to each LED.

Summary of Contents for C8051F41 Series

Page 1: ...onnect one end of the USB cable to the USB connector on the USB Debug Adapter 3 Connect the other end of the USB cable to a USB Port on the PC 4 Connect the ac dc power adapter to power jack P1 on the target board Notes Use the Reset button in the IDE to reset the target when connected using a USB Debug Adapter Remove power from the target board and the USB Debug Adapter before connecting or disco...

Page 2: ...io Simplicity Studio from the start menu or clicking the Simplicity Studio shortcut on the desktop Follow the instructions to install the software and click Simplicity IDE to launch the IDE The first time the project creation wizard runs the Setup Environment wizard will guide the user through the process of configuring the build tools and SDK selection In the Part Selection step of the wizard sel...

Page 3: ...e Part drop down select C8051F410 and in the SDK drop down select the desired SDK Click Next 4 Select Example and click Next 5 Under C8051F410 Development Kit in the Blinky folder select F41x Blinky and click Finish 6 Click on the project in the Project Explorer and click Build the hammer icon in the top bar Alternatively go to Project Build Project 7 Click Debug to download the project to the har...

Page 4: ...w silabs com products mcu Pages ProgrammingOptions aspx ToolStick Development Tools Software and examples for the ToolStick development platform More information on this platform can be found at www silabs com toolstick The development kit includes the latest version of the C51 Keil 8051 toolset This toolset is initially limited to a code size of 2 kB and programs start at code address 0x0800 Afte...

Page 5: ...with the license activation code 8 Copy the License ID Code LIC from the email 9 Paste the LIC into the New License ID Code LIC text box at the bottom of the License Management window in µVision4 10 Press the Add LIC button The window should now list the PK51 Prof Developers Kit for Silabs as a licensed product 11 Click the Close button ...

Page 6: ...nector J3 Port I O Configuration Jumper Block J4 DEBUG connector for Debug Adapter interface J5 DB 9 connector for UART0 RS232 interface J6 Analog I O terminal block J7 Connector for IDAC0 voltage circuit J8 USB Debug Adapter target board power connector J9 J10 External crystal enable connectors J11 Connector for IDAC1 voltage circuit J12 Connector block for Thermistor circuitry J13 J14 ADC extern...

Page 7: ...ng a USB debug adapter Note Before enabling either voltage regulator the user should check the 4 supply rail selection headers J29 J30 J17 J12 J31 32 to ensure the correct voltage is being routed to the correct power pin An incorrect jumper setting may permanently damage the board Note that VDD cannot exceed 2 5 V and is typically derived from the on chip regulator Do not connect the 5 25 or 3 3 V...

Page 8: ...s labeled indicating the signal available at the connection point See Table 2 for a list of pin descriptions for J1 Table 1 Target Board I O Descriptions Description I O Jumper SW1 Reset none SW2 P1 4 J5 3 4 SW3 P1 5 J5 7 8 Green LED D3 P2 1 J5 1 2 Green LED D5 P2 3 J5 5 6 Red LED D1 VREGIN J24 Red LED D2 VDD J23 Red LED D12 VIO J33 Table 2 J1 Pin Descriptions Pin Description Pin Description 1 P0 ...

Page 9: ... J27 1 2 Install shorting block to connect UART0 TX P0 4 to transceiver J27 3 4 Install shorting block to connect UART0 RX P0 5 to transceiver J27 5 6 Install shorting block to connect UART0 RTS P1 4 to transceiver J27 7 8 Install shorting block to connect UART0 CTS P1 5 to transceiver 4 7 Analog I O J6 Many of the C8051F410 target device s port pins are connected to the J2 terminal block Connecti...

Page 10: ...This connection is routed from J4 10 to J8 1 Place a shorting block at header J8 2 3 to power the board directly from an ac dc power adapter Place a shorting block at header J8 1 2 to power the board from the USB Debug Adapter The second option is not supported with either the EC1 or EC2 Serial Adapters 4 10 smaRTClock Real Time Clock The C8051F41x Target Board is designed for developing system us...

Page 11: ...C8051F41x Rev 0 3 11 5 Schematics Figure 5 C8051F410 Target Board Schematic Page 1 of 3 ...

Page 12: ...C8051F41x 12 Rev 0 3 Figure 6 C8051F410 Target Board Schematic Page 2 of 3 ...

Page 13: ...C8051F41x Rev 0 3 13 Figure 7 C8051F410 Target Board Schematic Page 3 of 3 ...

Page 14: ...051F41x 14 Rev 0 3 DOCUMENT CHANGE LIST Revision 0 2 to Revision 0 3 Removed Section 9 USB Debug Adapter See USB Debug Adapter User s Guide Revision 0 3 to Revision 0 4 Updated 3 Software Setup on page 2 ...

Page 15: ...or health which if it fails can be reasonably expected to result in significant personal injury or death Silicon Laboratories products are generally not intended for military applications Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including but not limited to nuclear biological or chemical weapons or missiles capable of delivering such weapons...

Page 16: ...Mouser Electronics Authorized Distributor Click to View Pricing Inventory Delivery Lifecycle Information Silicon Laboratories C8051F410DK ...

Reviews: