...the world's most energy friendly microcontrollers
2014-07-02 - Gecko Family - d0001_Rev1.30
98
www.silabs.com
oscillator (HFRCO or HFXO) or one of the low-frequency oscillators (LFRCO or LFXO). By default the
HFRCO is selected. In most applications, one of the high frequency oscillators will be the preferred
choice. To change the selected HFCLK write to HFCLKSEL in CMU_CMD. The HFCLK is running in
EM0 and EM1.
11.3.1.2 HFCORECLK - High Frequency Core Clock
HFCORECLK is a prescaled version of HFCLK. This clock drives the Core Modules, which consists of
the CPU and modules that are tightly coupled to the CPU, e.g. MSC, DMA etc. This also includes the
interface to the Low Energy Peripherals. Some of the modules that are driven by this clock can be clock
gated completely when not in use. This is done by clearing the clock enable bit for the specific module
in CMU_HFCORECLKEN0. The frequency of HFCORECLK is set using the CMU_HFCORECLKDIV
register. The setting can be changed dynamically and the new setting takes effect immediately.
Note
Note that if HFPERCLK runs faster than HFCORECLK, the number of clock cycles for each
bus-access to peripheral modules will increase with the ratio between the clocks. Please
refer to Section 5.2.3.2 (p. 20) for more details.
11.3.1.3 HFPERCLK - High Frequency Peripheral Clock
Like HFCORECLK, HFPERCLK can also be a prescaled version of HFCLK. This clock drives the
High-Frequency Peripherals. All the peripherals that are driven by this clock can be clock gated
completely when not in use. This is done by clearing the clock enable bit for the specific peripheral in
CMU_HFPERCLKEN0. The frequency of HFPERCLK is set using the CMU_HFPERCLKDIV register.
The setting can be changed dynamically and the new setting takes effect immediately.
Note
Note that if HFPERCLK runs faster than HFCORECLK, the number of clock cycles for each
bus-access to peripheral modules will increase with the ratio between the clocks. E.g. if a
bus-access normally takes three cycles, it will take 9 cycles if HFPERCLK runs three times
as fast as the HFCORECLK.
11.3.1.4 LFACLK - Low Frequency A Clock
LFACLK is the selected clock for the Low Energy A Peripherals. There are three selectable sources
for LFACLK: LFRCO, LFXO and HFCORECLK
LE
/2. In addition, the LFACLK can be disabled. From
reset, the LFACLK source is set to LFRCO. However, note that the LFRCO is disabled from reset. The
selection is configured using the LFA field in CMU_LFCLKSEL. The HFCORECLK
LE
/2 setting allows
the Low Energy A Peripherals to be used as high-frequency peripherals.
Note
If HFCORECLK/2 is selected as LFACLK, the clock will stop in EM2/3.
Each Low Energy Peripheral that is clocked by LFACLK has its own prescaler setting and enable bit.
The prescaler settings are configured using CMU_LFAPRESC0 and the clock enable bits can be found
in CMU_LFACLKEN0. Notice that the LCD has an additional high resolution prescaler for Frame Rate
Control, configured by FDIV in CMU_LCDCTRL. When operating in oversampling mode, the pulse
counters are clocked by LFACLK. This is configured for each pulse counter (n) individually by setting
PCNTnCLKSEL in CMU_PCNTCTRL.
11.3.1.5 LFBCLK - Low Frequency B Clock
LFBCLK is the selected clock for the Low Energy B Peripherals. There are three selectable sources
for LFBCLK: LFRCO, LFXO and HFCORECLK
LE
/2. In addition, the LFBCLK can be disabled. From
reset, the LFBCLK source is set to LFRCO. However, note that the LFRCO is disabled from reset. The
selection is configured using the LFB field in CMU_LFCLKSEL. The HFCORECLK
LE
/2 setting allows
the Low Energy B Peripherals to be used as high-frequency peripherals.
Note
If HFCORECLK/2 is selected as LFBCLK, the clock will stop in EM2/3.
Summary of Contents for EFM32G
Page 505: ......