Installation and Operation Manual (Rev B)
PVI 10KW, 13KW, 15KW
12
DOCR-060011
disconnect switch terminals are listed for 75
o
C wire; see NEC 310.10 or Canadian Electrical Code
regarding temperature ratings of wire and terminals. Temperature derates, voltage drop and
other considerations may dictate that larger than minimum wire sizes be used. Verify that wire
size choices meet local codes.
Inverter
Model
AC
Voltage
Number of AC
Conductors
Minimum AC Wire
Size
Maximum AC
Wire Size
Torque
PVI 10KW
208VAC 3 (1 per phase)
8 AWG, 90°C Cu
2 AWG, 90°C Cu
45 In-lb
240VAC 3 (1 per phase)
10 AWG, 90°C Cu
2 AWG, 90°C Cu
45 In-lb
480VAC 3 (1 per phase)
14 AWG, 90°C Cu
2 AWG, 90°C Cu
45 In-lb
600VAC 4 (1 per phase
and neutral)
14 AWG, 90°C Cu
2 AWG, 90°C Cu
45 In-lb
PVI 13KW
208VAC 3 (1 per phase)
8 AWG, 90°C Cu
2 AWG, 90°C Cu
45 In-lb
240VAC 3 (1 per phase)
8 AWG, 90°C Cu
2 AWG, 90°C Cu
45 In-lb
480VAC 3 (1 per phase)
12 AWG, 90°C Cu
2 AWG, 90°C Cu
45 In-lb
600VAC 4 (1 per phase
and neutral)
12 AWG, 90°C Cu
2 AWG, 90°C Cu
45 In-lb
PVI 15KW
208VAC 3 (1 per phase)
6 AWG, 90°C Cu
2 AWG, 90°C Cu
45 In-lb
240VAC 3 (1 per phase)
8 AWG, 90°C Cu
2 AWG, 90°C Cu
45 In-lb
480VAC 3 (1 per phase)
10 AWG, 90°C Cu
2 AWG, 90°C Cu
45 In-lb
600VAC 4 (1 per phase
and neutral)
12 AWG, 90°C Cu
2 AWG, 90°C Cu
45 In-lb
Table 4.5 – Wire Sizes Associated with Inverter Unfused AC Disconnect Switch
AC disconnect switch for the PVI 10-15KW is
unfused
. The inverter must be protected with a
dedicated overcurrent protection device. The overcurrent protection device must be
adequately rated based on the continuous output current. See NEC 690, NEC 705 and NEC 240
for guidance on sizing the OCPD. The table below summarizes the required ampere rating for
nominal 125% rated OCPD’s.
Inverter
Model
AC Voltage
208V
240V
480V
600V
PVI 10KW
35A
30A
15A
15A
PVI 13KW
50A
40A
20A
20A
PVI 15KW
60A
45A
25A
20A
Table 4.6 – Nominal 125% Rated Backfeed OCPD Ampere Ratings
Designing for less than 1% AC phase-to-phase voltage rise is highly recommended. Minimizing
wiring impedance also results in higher system efficiency. Small conductors and excess wiring
impedance forces the voltage at the inverter to be higher than the voltage at the service