background image

Technical Manual Evolution Hopper Standard Interface Model (EV01000)

Page 15 of 22

22-10-07

The power switches are optional. These switches can be used for additional security regarding hopper
payout. By powering the hopper first with the logic supply, the presence and hopper status can be
checked by testing the security and coin exit outputs. If the hopper is Ok, the power switches may be
activated to start hopper payout.

7.3 Hopper control

As soon as the hopper logic power supply is present, the hopper will set the operating mode by
reading its In1 and In2 inputs. See Table 3: Mode selection input logic for all modes.
The mode can be set by hardwiring In1 and In2 or by logic control by the machine.
Controlling the In1 and In2 inputs by the machine gives the possibility to put the hopper temporarily in
RESET mode to check the opto-sensors and coin exit output.
As long as the hopper logic power is present, the hopper mode can not be changed, except for the
RESET mode. Entering RESET mode can be done always. After leaving the RESET mode by
changing the In1 and In2 level again, the hopper performs an internal reset, and the new operating
mode is determined from the In1 and In2 levels.

7.3.1 Mode 0

If the hopper is set in mode 0, the hopper is started by applying Vmotor to the hopper. This can be
done by switching the 24V power line, or by switching the 0V line or both. The hopper is braked as
soon as Vmotor is switched off. Note that in order to prevent any over-payouts, the hopper should be
braked at the first (falling) edge of the coin exit output pulse.

7.3.2 Mode 1

In mode 1 the hopper is started by pulling the In3 line low to ground. The hopper is braked as soon as
the In3 line is pulled up again to Vlogic. Note that in order to prevent any over-payouts, the hopper
should be braked at the first (falling) edge of the coin exit output pulse.

7.3.3 Mode 2

In mode 3, for each active low pulse transmitted on In3, a coin is paid. The hopper will stop
automatically after the last start pulse.

7.3.4 Security Output

During normal hopper operation this output is active low. The security output will be pulled up to Vlogic
(high) if the opto-sensor is not working correctly (dirty, fraud or defect).
This output can also be used to check the presence of the hopper (output should be low then).

7.3.5 Coin Exit Output

As soon as a coin enters the opto exit window, the coin exit will go active low (after a small digital filter
5ms) and go up again (pulled up) when the coin leaves the coin exit window.
If a coin blocks the opto-sensor for more than 1 second, the hopper motor is braked and started again
as soon as the opto is not blocked anymore.
If the opto-sensor has become too dirty, the coin exit will remain low.

7.3.6 Low Level and High (Top) Level output

These outputs are directly attached to the plate sensors of the Evolution Hopper. The must be pulled
up by the machine. When the hopper is filled with coins these plates are shorted to the ground plate
via the coins. During payout the coins will move over the plates causing changing signals on the
outputs. The best moment to check the coin level outputs is when the hopper is not paying out.

Summary of Contents for Evolution EV01000

Page 1: ...Technical Manual Evolution Hopper Standard Interface Model EV01000 Page 1 of 22 22 10 07 Evolution Hopper EV01000 Product Manual Version 1 1 Oct 2007 ...

Page 2: ...istory Revision Date Comment By 0 1 5 Sept 2005 Initial Release R T 0 2 12 Sept 2005 Added hopper application information chapter 7 Renumbered chapters R T 0 3 18 Sept 2005 Added section 6 8 4 R T 1 0 1 Nov 2005 Part numbers spelling E S 1 1 17 Okt 2007 New Exploded views Table belt part numbers E S ...

Page 3: ...rect use of the product Design and specifications are subject to change without notice Wijzigingen in ontwerp en technische gegevens voorbehouden zonder kennisgeving La conception et les spécifications sont modifiables sans préavis El diseño y especificaciones están sujetos a cambios sin previo aviso WARNING Failure to observe the interface requirements specified in this technical manual may resul...

Page 4: ...ODE 1 LOGIC CONTROL 11 6 2 3 MODE 2 COIN COUNTING 11 6 2 4 RESET FUNCTION 12 6 3 Optical Sensors 12 6 4 Optical Security Feature 12 6 5 Motor Operation 12 6 6 Motor Current Limit 12 6 7 Coins With Holes 13 6 8 High Security Exit Window 13 6 8 1 Description 13 6 8 2 Security 13 6 8 3 Opto test 13 6 8 4 Dirty opto 13 7 Hopper Application 14 7 1 Power Supply 14 7 2 Suggested hopper connection 14 7 3 ...

Page 5: ...able 4 Coin Size vs Track type 16 Table 5 Electrical Interface 16 Figures Figure 1 Connector locations 7 Figure 2 Connector pin out 7 Figure 3 Hopper connection diagram 14 Figure 4 Connector pinout 16 Figure 5 Logic inputs 17 Figure 6 Logic outputs 17 Figure 7 Hopper dimensions 18 Figure 8 Base plate dimensions 19 Figure 9 21 01 30 00 mm series 20 Figure 10 19 00 26 40 mm series 21 Figure 11 16 25...

Page 6: ...ange 16 25mm to 30mm diameter and 1 25mm 3 5mm thick giving the following approximate capacities Capacity Hopper volume Coin volume Diameter mm Thickness mm Coin type Approx capacity 25 75 2 20 2 Euro 1000 23 25 2 35 1 Euro 1200 24 25 2 40 0 50 Euro 1100 24 25 1 75 US quarter 1500 Table 1 Hopper capacity for some popular coins The standard version of the Evolution Hopper can handle coins between 2...

Page 7: ...s the connector on the adjacent position The user can easily change this on an Evolution Hopper by loosening two screws on the bottom section taking out this part and then placing the cable with the connector at the opposite side Figure 1 Connector locations 3 2 Level Sensing All Evolution Hoppers are standard supplied with a low level and high level sensing function 3 3 Connectors Evolution Hoppe...

Page 8: ...0 0 10 0 05 19 00 26 40 mm x 1 50 2 50 mm Yellow EV0050 3 Euro small 0 10 0 05 0 02 0 01 16 25 20 90 mm x 1 00 3 10 mm Green EV0050 4 Table 2 Coin size Vs Track type 3 5 Base plate The base plate offers the easy slide in and out function with a pre fitted connector that can simply be removed for fitting it in a cable harness The base plate is standard supplied with the Evolution Hopper See Figure ...

Page 9: ...e 2 Connector pin out for connector details and for interfacing recommendations NOTE The wire to be used should have a maximum length of 3 metres and must be capable of handling the maximum Currents and Voltages specified in Table 5 Electrical Interface 3 Slide the hopper into the base plate and ensure that the two halves of the connector are securely mated 4 Turn on the power 4 2 Safety 1 Do not ...

Page 10: ...able connects the main control board to the 12 way socket and carries all power supplies and control signals 5 2 Removal of the Electronics and Opto Sensor Board All the electronics and sensors are placed on one board located behind the exit door at the side of the hopper Slide the yellow button to the opposite position and remove the exit door where the electronics are mounted Taking out the boar...

Page 11: ...ogic 6 2 1 MODE 0 DIRECT SWITCHING This is the default operating Mode and is selected when all of the input selectors are left open circuit When the 24V line is established the motor starts in the forward direction and when the 24V power line is removed the motor is braked 6 2 2 MODE 1 LOGIC CONTROL In this mode the logic and 24V power supplies can be permanently connected and motor function is de...

Page 12: ...sor is monitored by the microprocessor and if the sensor remains obstructed for more than one second the motor will be braked and will remain off until either the sensor is cleared or power down takes place This action will result if a coin jams in the exit window or if the optical sensor fails which could be checked by toggling IN3 in Reset Mode If the security feature is operational the security...

Page 13: ...iption The payout window uses optics consisting of an IR Led transmitting a beam that is reflected by a prism in an U shaped form and received back on an IR receiver The intensity of the IR pulse is minimized so that the somewhat transparant plastic coins as well as highly reflective coins are detected as optimal as possible The intensity of the IR pulse is adjusted dynamically to a higher level i...

Page 14: ...VL VL VL VL VLogic VL VL VLogic 24Vdc Coin Exit Output Motor24Vdc Supply MotorGnd Supply 0V High or Top Level Sense Low Level Sense Security Output Logic Power Supply VLogic In1 0V Logic Gnd In3 Set Mode In1 Start Stop Set Mode In2 In2 10K 47K 47E 47K 47E 10K 39K NPN NPN NPN 24Vdc Power Supply 12 24Vdc Logic Supply Machine Optional Power Switches Evo Hopper Twist Wires Pin9 Motor Supply 24Vdc Pin1...

Page 15: ...payouts the hopper should be braked at the first falling edge of the coin exit output pulse 7 3 2 Mode 1 In mode 1 the hopper is started by pulling the In3 line low to ground The hopper is braked as soon as the In3 line is pulled up again to Vlogic Note that in order to prevent any over payouts the hopper should be braked at the first falling edge of the coin exit output pulse 7 3 3 Mode 2 In mode...

Page 16: ...y Capacity Hopper volume Coin volume 8 3 Connector Pin Description 1 Motor Supply 0 Vdc 2 Logic Supply 0 Vdc 3 Coin Exit Output 4 IN1 5 Security Output 6 High or Top level Sense Output 7 Low level Sense Output 8 IN2 9 Motor Supply 24Vdc 10 Logic Supply 12 24Vdc 11 Coin Exit Output 12 IN3 Figure 4 Connector pinout 8 4 Electrical Interface Electrical Interface Parallel Serial Voltage nominal 24 VDC ...

Page 17: ...ic Compatibility Requirements for household appliances electric tools and similar apparatus Part 1 Emission EN 55014 2 1997 A1 2001 Electromagnetic Compatibility Requirements for household appliances electric tools and similar apparatus Part 2 Immunity Product family standard EN 61000 3 2 2000 Electromagnetic compatibility Part 3 2 Limits Limits for Harmonic current emissions equipment input curre...

Page 18: ...Technical Manual Evolution Hopper Standard Interface Model EV01000 Page 18 of 22 22 10 07 9 Dimensions Figure 7 Hopper dimensions ...

Page 19: ...Technical Manual Evolution Hopper Standard Interface Model EV01000 Page 19 of 22 22 10 07 Figure 8 Base plate dimensions ...

Page 20: ...Technical Manual Evolution Hopper Standard Interface Model EV01000 Page 20 of 22 22 10 07 10 Exploded Views Figure 9 21 01 30 00 mm series ...

Page 21: ...Technical Manual Evolution Hopper Standard Interface Model EV01000 Page 21 of 22 22 10 07 Figure 10 19 00 26 40 mm series ...

Page 22: ...Technical Manual Evolution Hopper Standard Interface Model EV01000 Page 22 of 22 22 10 07 Figure 11 16 25 20 90 mm series ...

Page 23: ......

Reviews: