© 2003 TDM Audio, Inc.
Electronic Crossover Owner’s Manual
Page 4
Introduction
hank you for purchasing the TDM 24CX series electronic crossover. These units are made
from the finest components and engineered to exacting standards. Precision components are
used in all critical circuitry for the finest sonic quality and performance. To get the most out of
your new crossover, please take a few minutes to review this manual and familiarize yourself
with the proper operation of the unit.
The remainder of this section provides background information about the theory of crossover
operation. Individuals that do not need this information may skip directly to the next section:
Mounting the Unit in a Rack.
Crossover Fundamentals
A crossover is used to divide a full-range sound signal into one or more frequency bands for
reproduction. This is necessary because most speaker components are designed to reproduce
only a portion of the audible frequency spectrum. A speaker system is made up of a collection of
speaker components, each of which can reproduce some part of the spectrum. The crossover’s
role is to divide the full-range sound source into the frequency bands appropriate to each of the
components in the speaker system.
Almost all sound reproducing systems have crossovers. In the majority of systems, including
most home and car stereo systems, and many commercial systems, the crossovers are in the
speaker cabinets. A speaker cabinet typically contains two or three, and sometimes even four or
five different kinds of components. In some cases a single component is duplicated. For instance,
some cabinets have more than one low-frequency driver to increase low-frequency power-
handling ability and efficiency. The full-range power signal that is fed into a speaker cabinet
goes through a crossover that splits it into the different bands. The outputs of the crossover are
connected to each of the different speaker components to create a complete system. Figure 1
illustrates this configuration.
T