background image

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Applications

Audio

www.ti.com/audio

Automotive and Transportation

www.ti.com/automotive

Amplifiers

amplifier.ti.com

Communications and Telecom

www.ti.com/communications

Data Converters

dataconverter.ti.com

Computers and Peripherals

www.ti.com/computers

DLP® Products

www.dlp.com

Consumer Electronics

www.ti.com/consumer-apps

DSP

dsp.ti.com

Energy and Lighting

www.ti.com/energy

Clocks and Timers

www.ti.com/clocks

Industrial

www.ti.com/industrial

Interface

interface.ti.com

Medical

www.ti.com/medical

Logic

logic.ti.com

Security

www.ti.com/security

Power Mgmt

power.ti.com

Space, Avionics and Defense

www.ti.com/space-avionics-defense

Microcontrollers

microcontroller.ti.com

Video and Imaging

www.ti.com/video

RFID

www.ti-rfid.com

OMAP Applications Processors

www.ti.com/omap

TI E2E Community

e2e.ti.com

Wireless Connectivity

www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265

Copyright © 2013, Texas Instruments Incorporated

Summary of Contents for LM3409HV

Page 1: ...which is used to select the PWM dimming method The evaluation board has a right angle connector J2 which can mate with an external LED load board allowing for the LEDs to be mounted close to the driver This reduces potential ringing when there is no output capacitor Alternatively the LED and LED turrets can be used to connect the LED load This board can be easily modified to demonstrate other oper...

Page 2: ... 1 74V to enable device a PWM signal to dim or a PWM dimming voltage 0 5V for low power shutdown 4 COFF Off time programming Connect resistor to VO and capacitor to GND to set the off time 5 GND Ground Connect to the system ground 6 PGATE Gate drive Connect to the gate of the external PFET 7 CSN Negative current sense Connect to the negative side of the sense resistor 8 CSP Positive current sense ...

Page 3: ... Q3 NMOS 100V 7 5A FAIRCHILD FDS3672 1 D1 Schottky 100V 3A VISHAY SS3H10 E3 57T 1 L1 33 µH 20 3 2A TDK SLF12575T 330M3R2 2 R1 R2 1Ω 1 VISHAY CRCW06031R00FNEA 1 R3 10kΩ 1 VISHAY CRCW060310K0FKEA 1 R4 100Ω 1 VISHAY CRCW0603100RFKEA 1 R5 0Ω 1 VISHAY CRCW06030000Z0EA 1 R6 16 5kΩ 1 VISHAY CRCW060316K5FKEA 1 R7 6 98kΩ 1 VISHAY CRCW06036K98FKEA 1 R8 49 9kΩ 1 VISHAY CRCW060349K9FKEA 1 R9 0 15Ω 1 1W VISHAY...

Page 4: ...out The two inner planes are GND and VIN Figure 2 Top Layer Figure 3 Bottom Layer 4 AN 1953 LM3409HV Evaluation Board SNVA390D May 2009 Revised May 2013 Submit Documentation Feedback Copyright 2009 2013 Texas Instruments Incorporated ...

Page 5: ...sign Procedure 6 1 Specifications VIN 48V VIN MAX 75V VO 42V fSW 400kHz ILED 1 5A ΔiLED PP ΔiL PP 300mA ΔvIN PP 1 44V VTURN ON 10V VHYS 1 1V η 0 97 6 2 Nominal Switching Frequency Assume C7 470pF and η 0 97 Solve for R6 1 The closest 1 tolerance resistor is 16 5 kΩ therefore the actual tOFF and target fSW are 2 3 The chosen components from step 1 are 4 5 SNVA390D May 2009 Revised May 2013 AN 1953 ...

Page 6: ...ign Procedure www ti com 6 3 Inductor Ripple Current Solve for L1 5 The closest standard inductor value is 33 µH therefore the actual ΔiL PP is 6 The chosen component from step 2 is 7 6 4 Average LED Current Determine IL MAX 8 Assume VADJ 1 24V and solve for R9 9 The closest 1 tolerance resistor is 0 15 Ω therefore the ILED is 10 The chosen component from step 3 is 11 6 5 Output Capacitance No out...

Page 7: ...K x I V LED O x V 75 V V MAX IN MAX T www ti com Design Procedure 6 7 P Channel MOSFET Determine minimum Q1 voltage rating and current rating 18 19 A 100V 3 8A PFET is chosen with RDS ON 190mΩ and Qg 20nC Determine IT RMS and PT 20 21 The chosen component from step 6 is 22 6 8 Recirculating Diode Determine minimum D1 voltage rating and current rating 23 24 A 100V 3A diode is chosen with VD 750mV D...

Page 8: ...nally It can be necessary to have an RC filter when using an external power supply in order to remove any high frequency noise or oscillations created by the power supply and the connecting cables The filter is chosen by assuming a standard value of C6 0 1µF and solving for a cut off frequency fC 2kHz 32 Since an exact fC is not critical a standard value of 1kΩ is used Section 8 shows a typical LE...

Page 9: ...d to the PWM2 terminal the shunt dimming circuit is complete Q3 is the shunt dimFET which conducts the LED current when turned on and blocks the LED voltage when turned off Q3 needs to be fast and rated for VO and ILED For design flexibility a fast 100V 7 5A NFET is chosen Q2 is necessary to invert the PWM signal so it properly translates the duty cycle to the shunt dimming FET Q2 also needs to be...

Page 10: ...xternal parallel FET dimming circuit will keep the inductor current close to its nominal value when Q3 is turned off This modification will ensure that the rise time of the LED current is only limited by the turn off time of the shunt FET as desired The following circuit additions allow for two different off times to occur When Q3 is off the standard off timer referenced from VO is set However whe...

Page 11: ...ADJ R10 C6 R11 C8 R5 D2 1 2 3 5 6 7 14 13 12 10 9 8 J2 J1 1 3 EN Q1 U1 Two Off timers for Shunt FET dimming ROFF2 www ti com Shunt FET Circuit Modification Figure 5 Multiple off timers for shunt FET dimming circuit 11 SNVA390D May 2009 Revised May 2013 AN 1953 LM3409HV Evaluation Board Submit Documentation Feedback Copyright 2009 2013 Texas Instruments Incorporated ...

Page 12: ... 7 6 5 4 3 2 1 0 1 2 8 2 4 2 0 1 6 1 2 0 8 0 4 0 0 0 4 ILED 2 és DIV 3 5 és VEN Typical Waveforms www ti com 8 Typical Waveforms TA 25 C VIN 48V and VO 42V Figure 6 20kHz 50 EN pin PWM dimming Figure 7 20kHz 50 EN pin PWM dimming rising edge Figure 8 100kHz 50 External FET PWM dimming Figure 9 100kHz 50 External FET PWM dimming rising edge 12 AN 1953 LM3409HV Evaluation Board SNVA390D May 2009 Rev...

Page 13: ...R6 R9 L1 and C8 The RMS current rating of L1 should be at least 50 higher than the specified ILED Designs 3 and 5 are optimized for best analog dimming range while designs 1 2 and 4 are optimized for best PWM dimming range These are just examples however any combination of specifications can be achieved by following the Design Procedure in the LM3409 3409HV 3409Q 3409QHV PFET Buck Controller for H...

Page 14: ...esponsible for compliance with all legal regulatory and safety related requirements concerning its products and any use of TI components in its applications notwithstanding any applications related information or support that may be provided by TI Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failur...

Reviews: