background image

Application Information

(Continued)

phase, can feedback in a similar manner and cause insta-
bilities. Out of phase ground loops also are troublesome,
causing unexpected gain and phase errors.

The solution to most ground loop problems is to always use
a single-point ground system, although this is sometimes
impractical. The third figure below is an example of a single-
point ground system.

The single-point ground concept should be applied rigor-
ously to all components and all circuits when possible. Vio-
lations of single-point grounding are most common among
printed circuit board designs, since the circuit is surrounded
by large ground areas which invite the temptation to run a
device to the closest ground spot. As a final rule, make all
ground returns low resistance and low inductance by using
large wire and wide traces.

Occasionally, current in the output leads (which function as
antennas) can be coupled through the air to the amplifier
input, resulting in high-frequency oscillation. This normally
happens when the source impedance is high or the input
leads are long. The problem can be eliminated by placing a
small capacitor, C

C

, (on the order of 50 pF to 500 pF) across

the LM3886 input terminals. Refer to the

External Compo-

nents Description

section relating to component interaction

with C

f

.

REACTIVE LOADING

It is hard for most power amplifiers to drive highly capacitive
loads very effectively and normally results in oscillations or
ringing on the square wave response. If the output of the
LM3886 is connected directly to a capacitor with no series
resistance, the square wave response will exhibit ringing if
the capacitance is greater than about 0.2 µF. If highly ca-
pacitive loads are expected due to long speaker cables, a
method commonly employed to protect amplifiers from low
impedances at high frequencies is to couple to the load
through a 10

resistor in parallel with a 0.7 µH inductor. The

inductor-resistor combination as shown in the

Typical Ap-

plication Circuit

isolates the feedback amplifier from the

load by providing high output impedance at high frequencies
thus allowing the 10

resistor to decouple the capacitive

load and reduce the Q of the series resonant circuit. The LR
combination also provides low output impedance at low
frequencies thus shorting out the 10

resistor and allowing

the amplifier to drive the series RC load (large capacitive
load due to long speaker cables) directly.

GENERALIZED AUDIO POWER AMPLIFIER DESIGN

The system designer usually knows some of the following
parameters when starting an audio amplifier design:

Desired Power Output

Input Level

Input Impedance

Load Impedance

Maximum Supply Voltage

Bandwidth

The power output and load impedance determine the power
supply requirements, however, depending upon the applica-
tion some system designers may be limited to certain maxi-
mum supply voltages. If the designer does have a power
supply limitation, he should choose a practical load imped-
ance which would allow the amplifier to provide the desired
output power, keeping in mind the current limiting capabili-
ties of the device. In any case, the output signal swing and
current are found from (where P

O

is the average output

power):

(5)

(6)

To determine the maximum supply voltage the following
parameters must be considered. Add the dropout voltage
(4V for LM3886) to the peak output swing, V

opeak

, to get the

supply rail value (i.e.

±

(V

opeak

+ Vod) at a current of I

opeak

).

The regulation of the supply determines the unloaded volt-
age, usually about 15% higher. Supply voltage will also rise
10% during high line conditions. Therefore, the maximum
supply voltage is obtained from the following equation:

Max. supplies

)

±

(V

opeak

+ Vod)(1 + regulation)(1.1)(7)

The input sensitivity and the output power specs determine
the minimum required gain as depicted below:

(8)

Normally the gain is set between 20 and 200; for a 40W, 8

audio amplifier this results in a sensitivity of 894 mV and
89 mV, respectively. Although higher gain amplifiers provide
greater output power and dynamic headroom capabilities,
there are certain shortcomings that go along with the so
called “gain.” The input referred noise floor is increased and
hence the SNR is worse. With the increase in gain, there is
also a reduction of the power bandwidth which results in a
decrease in feedback thus not allowing the amplifier to re-
spond quickly enough to nonlinearities. This decreased abil-
ity to respond to nonlinearities increases the THD + N speci-
fication.

The desired input impedance is set by R

IN

. Very high values

can cause board layout problems and DC offsets at the
output. The value for the feedback resistance, R

f1

, should be

chosen to be a relatively large value (10 k

–100 k

), and

the other feedback resistance, Ri, is calculated using stan-
dard op amp configuration gain equations. Most audio am-
plifiers are designed from the non-inverting amplifier configu-
ration.

DESIGN A 40W/4

AUDIO AMPLIFIER

Given:

Power Output

40W

Load Impedance

4

Input Level

1V(max)

Input Impedance

100 k

Bandwidth

20 Hz–20 kHz

±

0.25 dB

Equations (5), (6)

give:

40W/4

V

opeak

= 17.9V

I

opeak

= 4.5A

Therefore the supply required is:

±

21.0V

@

4.5A

With 15% regulation and high line the final supply voltage is

±

26.6V using

Equation (7)

. At this point it is a good idea to

check the Power Output vs Supply Voltage to ensure that the
required output power is obtainable from the device while
maintaining low THD + N. It is also good to check the Power
Dissipation vs Supply Voltage to ensure that the device can
handle the internal power dissipation. At the same time
designing in a relatively practical sized heat sink with a low
thermal resistance is also important. Refer to

Typical Per-

formance Characteristics

graphs and the

Thermal Con-

siderations

section for more information.

LM3886

www.national.com

20

Summary of Contents for LM3886 Overture

Page 1: ...Features n 68W cont avg output power into 4 at VCC 28V n 38W cont avg output power into 8 at VCC 28V n 50W cont avg output power into 8 at VCC 35V n 135W instantaneous peak output power capability n...

Page 2: ...liminary call you local National Sales Rep or distributor for availability Top View Order Number LM3886T or LM3886TF See NS Package Number TA11B for Staggered Lead Non Isolated Package or TF11B Note 1...

Page 3: ...cal Note 10 Limit Note 11 V V Power Supply Voltage Note 14 Vpin7 V 9V 18 20 84 V min V max AM Mute Attenuation Pin 8 Open or at 0V Mute On Current out of Pin 8 0 5 mA Mute Off 115 80 dB min PO Note 4...

Page 4: ...device is within the Operating Ratings Specifications are not guaranteed for parameters where no limit is given however the typical value is a good indication of device performance Note 7 For operati...

Page 5: ...Test Circuit 1 DC Electrical Test Circuit 01183303 Test Circuit 2 AC Electrical Test Circuit 01183304 LM3886 www national com 5...

Page 6: ...ional components dependent upon specific design requirements Refer to the External Components Description section for a component functional description FIGURE 2 Typical Single Supply Audio Amplifier...

Page 7: ...Equivalent Schematic excluding active protection circuitry 01183306 LM3886 www national com 7...

Page 8: ...M VEE 2 6V I8 where I8 0 5 mA Refer to the Mute Attenuation vs Mute Current curves in the Typical Performance Characteristics section 13 CM Mute capacitance set up to create a large time constant for...

Page 9: ...s Safe Area SPiKe Protection Response 01183318 01183319 Supply Current vs Supply Voltage Pulse Thermal Resistance 01183320 01183321 Pulse Thermal Resistance Supply Current vs Output Voltage 01183365 0...

Page 10: ...ower Limit Pulse Power Limit 01183323 01183324 Supply Current vs Case Temperature Input Bias Current vs Case Temperature 01183325 01183326 Clipping Voltage vs Supply Voltage Clipping Voltage vs Supply...

Page 11: ...cteristics Continued THD N vs Frequency THD N vs Frequency 01183329 01183330 THD N vs Frequency THD N vs Output Power 01183331 01183332 THD N vs Output Power THD N vs Output Power 01183333 01183334 LM...

Page 12: ...istics Continued THD N vs Output Power THD N vs Output Power 01183335 01183336 THD N vs Output Power THD N vs Output Power 01183337 01183338 THD N vs Output Power THD N vs Output Power 01183339 011833...

Page 13: ...eristics Continued THD N Distribution THD N Distribution 01183341 01183342 THD N Distribution THD N Distribution 01183343 01183344 THD N Distribution Output Power vs Load Resistance 01183345 01183346...

Page 14: ...tion vs Supply Voltage 01183309 Note The maximum heat sink thermal resistance values SA in the table above were calculated using a CS 0 2 C W due to thermal compound Power Dissipation vs Output Power...

Page 15: ...eristics Continued IMD 60 Hz 7 kHz 4 1 IMD 60 Hz 7 kHz 4 1 01183351 01183352 IMD 60 Hz 1 1 IMD 60 Hz 7 kHz 1 1 01183353 01183354 IMD 60 Hz 7 kHz 1 1 Mute Attenuation vs Mute Current 01183355 01183356...

Page 16: ...istics Continued Mute Attenuation vs Mute Current Large Signal Response 01183357 01183358 Power Supply Rejection Ratio Common Mode Rejection Ratio 01183359 01183360 Open Loop Frequency Response 011833...

Page 17: ...circumstances The heat sink should be chosen to dissipate the maximum IC power for a given supply voltage and rated load With high power pulses of longer duration than 100 ms the case temperature will...

Page 18: ...rresponding parameters as described previously If the ambient temperature that the audio amplifier is to be working under is higher than the normal 25 C then the thermal resistance for the heat sink g...

Page 19: ...eater but as with any other high current amplifier the LM3886 can be made to oscillate under certain conditions These usually involve printed cir cuit board layout or output input coupling When design...

Page 20: ...ca tion some system designers may be limited to certain maxi mum supply voltages If the designer does have a power supply limitation he should choose a practical load imped ance which would allow the...

Page 21: ...uate frequency re sponse of the output PNP device can cause a turn on delay giving crossover distortion on the negative going transition through zero crossing at the higher audio frequencies THD N Tot...

Page 22: ...hen the open loop gain can be found at any frequency This is also an excellent equation to determine the 3 dB point of a closed loop gain assuming that you know the GBWP of the device Refer to the dia...

Page 23: ...Physical Dimensions inches millimeters unless otherwise noted Order Number LM3886T NS Package Number TA11B Order Number LM3886TF NS Package Number TF11B LM3886 www national com 23...

Page 24: ...oducts and packing materials meet the provisions of the Customer Products Stewardship Specification CSP 9 111C2 and the Banned Substances and Materials of Interest Specification CSP 9 111S2 and contai...

Reviews: