background image

Application Information

(Continued)

The minimum gain from

Equation (8)

is:

A

V

12.6

We select a gain of 13 (Non-Inverting Amplifier); resulting in
a sensitivity of 973 mV.

Letting R

IN

equal 100 k

gives the required input imped-

ance, however, this would eliminate the “volume control”
unless an additional input impedance was placed in series
with the 10 k

potentiometer that is depicted in

Figure 1

.

Adding the additional 100 k

resistor would ensure the

minumum required input impedance.

For low DC offsets at the output we let R

f1

= 100 k

. Solving

for Ri (Non-Inverting Amplifier) gives the following:

Ri = R

f1

/(A

V

− 1) = 100k/(13 − 1) = 8.3 k

; use 8.2 k

The bandwidth requirement must be stated as a pole, i.e.,
the 3 dB frequency. Five times away from a pole gives
0.17 dB down, which is better than the required 0.25 dB.
Therefore:

f

L

= 20 Hz/5 = 4 Hz

f

H

= 20 kHz x 5 = 100 kHz

At this point, it is a good idea to ensure that the Gain-
Bandwidth Product for the part will provide the designed gain
out to the upper 3 dB point of 100 kHz. This is why the
minimum GBWP of the LM3886 is important.

GBWP

A

V

x f3 dB = 13 x 100 kHz = 1.3 MHz

GBWP = 2.0 MHz (min) for the LM3886

Solving for the low frequency roll-off capacitor, Ci, we have:

Ci

1/(2

π

Ri f

L

) = 4.85 µF; use 4.7 µF.

Definition of Terms

Input Offset Voltage:

The absolute value of the voltage

which must be applied between the input terminals through
two equal resistances to obtain zero output voltage and
current.

Input Bias Current:

The absolute value of the average of

the two input currents with the output voltage and current at
zero.

Input Offset Current:

The absolute value of the difference

in the two input currents with the output voltage and current
at zero.

Input Common-Mode Voltage Range (or Input Voltage
Range):

The range of voltages on the input terminals for

which the amplifier is operational. Note that the specifica-
tions are not guaranteed over the full common-mode voltage
range unless specifically stated.

Common-Mode Rejection:

The ratio of the input common-

mode voltage range to the peak-to-peak change in input
offset voltage over this range.

Power Supply Rejection:

The ratio of the change in input

offset voltage to the change in power supply voltages pro-
ducing it.

Quiescent Supply Current:

The current required from the

power supply to operate the amplifier with no load and the
output voltage and current at zero.

Slew Rate:

The internally limited rate of change in output

voltage with a large amplitude step function applied to the
input.

Class B Amplifier:

The most common type of audio power

amplifier that consists of two output devices each of which
conducts for 180˚ of the input cycle. The LM3886 is a
Quasi-AB type amplifier.

Crossover Distortion:

Distortion caused in the output stage

of a class B amplifier. It can result from inadequate bias
current providing a dead zone where the output does not
respond to the input as the input cycle goes through its zero
crossing point. Also for ICs an inadequate frequency re-
sponse of the output PNP device can cause a turn-on delay
giving crossover distortion on the negative going transition
through zero crossing at the higher audio frequencies.

THD + N:

Total Harmonic Distortion plus Noise refers to the

measurement technique in which the fundamental compo-
nent is removed by a bandreject (notch) filter and all remain-
ing energy is measured including harmonics and noise.

Signal-to-Noise Ratio:

The ratio of a system’s output signal

level to the system’s output noise level obtained in the
absence of a signal. The output reference signal is either
specified or measured at a specified distortion level.

Continuous Average Output Power:

The minimum sine

wave continuous average power output in watts (or dBW)
that can be delivered into the rated load, over the rated
bandwidth, at the rated maximum total harmonic distortion.

Music Power:

A measurement of the peak output power

capability of an amplifier with either a signal duration suffi-
ciently short that the amplifier power supply does not sag
during the measurement, or when high quality external
power supplies are used. This measurement (an IHF stan-
dard) assumes that with normal music program material the
amplifier power supplies will sag insignificantly.

Peak Power:

Most commonly referred to as the power out-

put capability of an amplifier that can be delivered to the
load; specified by the part’s maximum voltage swing.

Headroom:

The margin between an actual signal operating

level (usually the power rating of the amplifier with particular
supply voltages, a rated load value, and a rated THD + N
figure) and the level just before clipping distortion occurs,
expressed in decibels.

Large Signal Voltage Gain:

The ratio of the output voltage

swing to the differential input voltage required to drive the
output from zero to either swing limit. The output swing limit
is the supply voltage less a specified quasi-saturation volt-
age. A pulse of short enough duration to minimize thermal
effects is used as a measurement signal.

Output-Current Limit:

The output current with a fixed out-

put voltage and a large input overdrive. The limiting current
drops with time once

SPiKe

protection circuitry is activated.

Output Saturation Threshold (Clipping Point):

The output

swing limit for a specified input drive beyond that required for
zero output. It is measured with respect to the supply to
which the output is swinging.

Output Resistance:

The ratio of the change in output volt-

age to the change in output current with the output around
zero.

Power Dissipation Rating:

The power that can be dissi-

pated for a specified time interval without activating the
protection circuitry. For time intervals in excess of 100 ms,
dissipation capability is determined by heat sinking of the IC
package rather than by the IC itself.

Thermal Resistance:

The peak, junction-temperature rise,

per unit of internal power dissipation (units in ˚C/W), above
the case temperature as measured at the center of the
package bottom.

The DC thermal resistance applies when one output transis-
tor is operating continuously. The AC thermal resistance

LM3886

www.national.com

21

Summary of Contents for LM3886 Overture

Page 1: ...Features n 68W cont avg output power into 4 at VCC 28V n 38W cont avg output power into 8 at VCC 28V n 50W cont avg output power into 8 at VCC 35V n 135W instantaneous peak output power capability n...

Page 2: ...liminary call you local National Sales Rep or distributor for availability Top View Order Number LM3886T or LM3886TF See NS Package Number TA11B for Staggered Lead Non Isolated Package or TF11B Note 1...

Page 3: ...cal Note 10 Limit Note 11 V V Power Supply Voltage Note 14 Vpin7 V 9V 18 20 84 V min V max AM Mute Attenuation Pin 8 Open or at 0V Mute On Current out of Pin 8 0 5 mA Mute Off 115 80 dB min PO Note 4...

Page 4: ...device is within the Operating Ratings Specifications are not guaranteed for parameters where no limit is given however the typical value is a good indication of device performance Note 7 For operati...

Page 5: ...Test Circuit 1 DC Electrical Test Circuit 01183303 Test Circuit 2 AC Electrical Test Circuit 01183304 LM3886 www national com 5...

Page 6: ...ional components dependent upon specific design requirements Refer to the External Components Description section for a component functional description FIGURE 2 Typical Single Supply Audio Amplifier...

Page 7: ...Equivalent Schematic excluding active protection circuitry 01183306 LM3886 www national com 7...

Page 8: ...M VEE 2 6V I8 where I8 0 5 mA Refer to the Mute Attenuation vs Mute Current curves in the Typical Performance Characteristics section 13 CM Mute capacitance set up to create a large time constant for...

Page 9: ...s Safe Area SPiKe Protection Response 01183318 01183319 Supply Current vs Supply Voltage Pulse Thermal Resistance 01183320 01183321 Pulse Thermal Resistance Supply Current vs Output Voltage 01183365 0...

Page 10: ...ower Limit Pulse Power Limit 01183323 01183324 Supply Current vs Case Temperature Input Bias Current vs Case Temperature 01183325 01183326 Clipping Voltage vs Supply Voltage Clipping Voltage vs Supply...

Page 11: ...cteristics Continued THD N vs Frequency THD N vs Frequency 01183329 01183330 THD N vs Frequency THD N vs Output Power 01183331 01183332 THD N vs Output Power THD N vs Output Power 01183333 01183334 LM...

Page 12: ...istics Continued THD N vs Output Power THD N vs Output Power 01183335 01183336 THD N vs Output Power THD N vs Output Power 01183337 01183338 THD N vs Output Power THD N vs Output Power 01183339 011833...

Page 13: ...eristics Continued THD N Distribution THD N Distribution 01183341 01183342 THD N Distribution THD N Distribution 01183343 01183344 THD N Distribution Output Power vs Load Resistance 01183345 01183346...

Page 14: ...tion vs Supply Voltage 01183309 Note The maximum heat sink thermal resistance values SA in the table above were calculated using a CS 0 2 C W due to thermal compound Power Dissipation vs Output Power...

Page 15: ...eristics Continued IMD 60 Hz 7 kHz 4 1 IMD 60 Hz 7 kHz 4 1 01183351 01183352 IMD 60 Hz 1 1 IMD 60 Hz 7 kHz 1 1 01183353 01183354 IMD 60 Hz 7 kHz 1 1 Mute Attenuation vs Mute Current 01183355 01183356...

Page 16: ...istics Continued Mute Attenuation vs Mute Current Large Signal Response 01183357 01183358 Power Supply Rejection Ratio Common Mode Rejection Ratio 01183359 01183360 Open Loop Frequency Response 011833...

Page 17: ...circumstances The heat sink should be chosen to dissipate the maximum IC power for a given supply voltage and rated load With high power pulses of longer duration than 100 ms the case temperature will...

Page 18: ...rresponding parameters as described previously If the ambient temperature that the audio amplifier is to be working under is higher than the normal 25 C then the thermal resistance for the heat sink g...

Page 19: ...eater but as with any other high current amplifier the LM3886 can be made to oscillate under certain conditions These usually involve printed cir cuit board layout or output input coupling When design...

Page 20: ...ca tion some system designers may be limited to certain maxi mum supply voltages If the designer does have a power supply limitation he should choose a practical load imped ance which would allow the...

Page 21: ...uate frequency re sponse of the output PNP device can cause a turn on delay giving crossover distortion on the negative going transition through zero crossing at the higher audio frequencies THD N Tot...

Page 22: ...hen the open loop gain can be found at any frequency This is also an excellent equation to determine the 3 dB point of a closed loop gain assuming that you know the GBWP of the device Refer to the dia...

Page 23: ...Physical Dimensions inches millimeters unless otherwise noted Order Number LM3886T NS Package Number TA11B Order Number LM3886TF NS Package Number TF11B LM3886 www national com 23...

Page 24: ...oducts and packing materials meet the provisions of the Customer Products Stewardship Specification CSP 9 111C2 and the Banned Substances and Materials of Interest Specification CSP 9 111S2 and contai...

Reviews: