Appendix A: Functions and Instructions
849
simult(
coeffMatrix
,
constMatrix[
,
tol]
)
⇒
matrix
Solves multiple systems of linear equations, where
each system has the same equation coefficients but
different constants.
Each column in
constMatrix
must contain the
constants for a system of equations. Each column in
the resulting matrix contains the solution for the
corresponding system.
Solve:
x + 2y = 1
x + 2y = 2
3x + 4y =
ë
1
3x + 4y =
ë
3
simult([1,2;3,4],[1,2;
ë
1,
ë
3])
¸
[
ë
3
ë
7
2 9/2
]
For the first system, x=
ë
3 and y=2. For the
second system, x=
ë
7 and y=9/2.
sin()
@
2 W
key
H
W
key
sin(
expression1
)
⇒
expression
sin(
list1
)
⇒
list
sin(
expression1
)
returns the sine of the argument as
an expression.
sin(
list1
)
returns a list of the sines of all elements in
list1
.
Note:
The argument is interpreted as either a
degree or radian angle, according to the current
angle mode. You can use
ó
or
ô
to override the
angle mode setting temporarily.
In Degree angle mode:
sin((
p
/4)
ô
)
¸
‡
2
2
sin(45)
¸
‡
2
2
sin({0,60,90})
¸
{
0
‡
3
2
1
}
In Radian angle mode:
sin(
p
/4)
¸
‡
2
2
sin(45
¡
)
¸
‡
2
2
sin(
squareMatrix1
)
⇒
squareMatrix
Returns the matrix sine of
squareMatrix1
. This is
not
the same as calculating the sine of each element.
For information about the calculation method, refer
to
cos()
.
squareMatrix1
must be diagonalizable. The result
always contains floating-point numbers.
In Radian angle mode:
sin([1,5,3;4,2,1;6,
ë
2,1])
¸
.942…
ë
.045…
ë
.031…
ë
.045… .949…
ë
.020…
ë
.048…
ë
.005… .961…
sin
ê
()
@
¥
Q
key
H
2
Q
key
sin
ê
(
expression1
)
⇒
expression
sin
ê
(
list1
)
⇒
list
sin
ê
(
expression1
)
returns the angle whose sine is
expression1
as an expression.
sin
ê
(
list1
)
returns a list of the inverse sines of each
element of
list1
.
Note:
The result is returned as either a degree or
radian angle, according to the current angle mode
setting.
In Degree angle mode:
sin
ê
(1)
¸
90
In Radian angle mode:
sin
ê
({0,.2,.5})
¸
{0 .201
...
.523
...
}
sin
ê
(
squareMatrix1
)
⇒
squareMatrix
Returns the matrix inverse sine of
squareMatrix1
.
This is
not the same as calculating the inverse sine
of each element. For information about the
calculation method, refer to
cos()
.
squareMatrix1
must be diagonalizable. The result
always contains floating-point numbers.
In Radian angle mode and Rectangular complex
format mode:
sin
ê
([1,5,3;4,2,1;6,
ë
2,1])
¸
ë
.164…
ì
.064…
ø
i
1.490…
ì
2.105…
ø
i
…
.725…
ì
1.515…
ø
i
.947…
ì
.778…
ø
i
…
2.083…
ì
2.632…
ø
i
ë
1.790…+1.271…
ø
i
…
Summary of Contents for Titanium TI-89
Page 9: ...Getting Started 6 TI 89 Titanium keys Ë Ì Í Ê ...
Page 34: ...Getting Started 31 2 or D 2 B u s i n e s s D B D B Press Result ...
Page 43: ...Getting Started 40 3 0 D B D D B D Press Result ...
Page 44: ...Getting Started 41 D 2 0 0 2 D B Scroll down to October and press Press Result ...
Page 58: ...Getting Started 55 Example Set split screen mode to TOP BOTTOM Press Result 3 B D ...
Page 70: ...Getting Started 67 ...
Page 175: ...Operating the Calculator 172 From the Keyboard ...
Page 456: ...Tables 453 ...
Page 527: ...Data Matrix Editor 524 ...