Appendix A: Functions and Instructions
797
cot
LLLL
1
()
MATH/Trig menu
cot
L
1
(
expression1
)
⇒
expression
cot
L
1
(
list1
)
⇒
list
Returns the angle whose cotangent is
expression1
or returns a list containing the
inverse cotangents of each element of
list1
.
Note:
The result is returned as a degree, gradian
or radian angle, according to the current angle
mode setting.
In Degree angle mode:
cot
L
1
(1)
¸
45
In Gradian angle mode:
cot
L
1
(1)
¸
50
In Radian angle mode:
cot
L
1
(1)
¸
p
4
coth()
MATH/Hyperbolic menu
coth(
expression1
)
⇒
⇒
⇒
⇒
expression
cot(
list1
)
⇒
⇒
⇒
⇒
list
Returns the hyperbolic cotangent of
expression1
or returns a list of the hyperbolic cotangents of all
elements of
list1
.
coth(1.2)
¸
1.199…
coth({1,3.2})
¸
{
1
tanh(1)
1.003…
}
coth
LLLL
1
()
MATH/Hyperbolic menu
coth
LLLL
1
(
expression1
)
⇒
⇒
⇒
⇒
expression
coth
LLLL
1
(
list1
)
⇒
⇒
⇒
⇒
list
Returns the inverse hyperbolic cotangent of
expression1
or returns a list containing the
inverse hyperbolic cotangents of each element of
list1
.
coth
L
1
(3.5)
¸
.293…
coth
L
1
({
L
2,2.1,6})
¸
{
L
ln(3)
2
.518… ln(7/5)
2
}
crossP()
MATH/Matrix/Vector ops menu
crossP(
list1
,
list2
)
⇒
⇒
⇒
⇒
list
Returns the cross product of
list1
and
list2
as a list.
list1
and
list2
must have equal dimension, and the
dimension must be either 2 or 3.
crossP({a1,b1},{a2,b2})
¸
{0 0 a1
ø
b2
ì
a2
ø
b1}
crossP({0.1,2.2,
ë
5},{1,
ë
.5,0})
¸
{
ë
2.5
ë
5.
ë
2.25}
crossP(
vector1
,
vector2
)
⇒
⇒
⇒
⇒
vector
Returns a row or column vector (depending on
the arguments) that is the cross product of
vector1
and
vector2
.
Both
vector1
and
vector2
must be row vectors, or
both must be column vectors. Both vectors must
have equal dimension, and the dimension must
be either 2 or 3.
crossP([1,2,3],[4,5,6])
¸
[
ë
3 6
ë
3]
crossP([1,2],[3,4])
¸
[0
0
ë
2]
csc()
MATH/Trig menu
csc(
expression1
)
⇒
⇒
⇒
⇒
expression
csc(
list1
)
⇒
⇒
⇒
⇒
list
Returns the cosecant of
expression1
or returns a
list containing the cosecants of all elements in
list1
.
In Degree angle mode:
csc(45)
¸
‡
2
In Gradian angle mode:
csc(50)
¸
‡
‡
‡
‡
2222
In Radian angle mode:
csc({1,
p
/2,
p
/3})
¸
{
1
sin(1)
1 2
¦
3
3 }
Summary of Contents for Voyage 200
Page 36: ...Getting Started 36 D B D B Press Result ...
Page 45: ...Getting Started 45 3 0 D B D D B D Press Result ...
Page 46: ...Getting Started 46 D 2 0 0 2 D B Scroll down to October and press Press Result ...
Page 60: ...Getting Started 60 B D Press Result ...
Page 139: ...Previews 139 8 Complete the operation Press 2 d Steps and keystrokes Display 5 f 2 ...
Page 453: ...Differential Equation Graphing 453 ...
Page 468: ...Tables 468 ...
Page 777: ...Activities 777 ...