Appendix A: Functions and Instructions
887
tanh()
MATH/Hyperbolic menu
tanh(
expression1
)
⇒
⇒
⇒
⇒
expression
tanh(
list1
)
⇒
⇒
⇒
⇒
list
tanh(
expression1
)
returns the hyperbolic tangent
of the argument as an expression.
tanh(
list
)
returns a list of the hyperbolic tangents
of each element of
list1
.
tanh(1.2)
¸
.833
...
tanh({0,1})
¸
{0 tanh(1)}
tanh(
squareMatrix1
)
⇒
⇒
⇒
⇒
squareMatrix
Returns the matrix hyperbolic tangent of
squareMatrix1
. This is
not
the same as calculating
the hyperbolic tangent of each element. For
information about the calculation method, refer
to
cos()
.
squareMatrix1
must be diagonalizable. The result
always contains floating-point numbers.
In Radian angle mode:
tanh([1,5,3;4,2,1;6,
ë
2,1])
¸
ë
.097… .933… .425…
.488… .538…
ë
.129…
1.282…
ë
1.034… .428…
tanh
ê
()
MATH/Hyperbolic menu
tanh
ê
(
expression1
)
⇒
⇒
⇒
⇒
expression
tanh
ê
(
list1
)
⇒
⇒
⇒
⇒
list
tanh
ê
(
expression1
)
returns the inverse hyperbolic
tangent of the argument as an expression.
tanh
ê
(
list1
)
returns a list of the inverse
hyperbolic tangents of each element of
list1
.
In rectangular complex format mode:
tanh
ê
(0)
¸
0
tanh
ê
({1,2.1,3})
¸
{
ˆ
.518
...
ì
1.570
...
ø
i
ln(2)
2
ì
p
2
ø
i
}
tanh
ê
(
squareMatrix1
)
⇒
⇒
⇒
⇒
squareMatrix
Returns the matrix inverse hyperbolic tangent of
squareMatrix1
. This is
not
the same as calculating
the inverse hyperbolic tangent of each element.
For information about the calculation method,
refer to
cos()
.
squareMatrix1
must be diagonalizable. The result
always contains floating-point numbers.
In Radian angle mode and Rectangular complex
format mode:
tanh
ê
([1,5,3;4,2,1;6,
ë
2,1])
¸
taylor()
MATH/Calculus menu
taylor(
expression1
,
var
,
order
[
,
point
]
)
⇒
⇒
⇒
⇒
expression
Returns the requested Taylor polynomial. The
polynomial includes non-zero terms of integer
degrees from zero through
order
in (
var
minus
point
).
taylor()
returns itself if there is no
truncated power series of this order, or if it would
require negative or fractional exponents. Use
substitution and/or temporary multiplication by a
power of
(
var
minus
point
) to determine more general
power series.
point
defaults to zero and is the expansion point.
taylor(
e
^(
‡
(x)),x,2)
¸
taylor(
e
^(t),t,4)|t=
‡
(x)
¸
taylor(1/(x
ù
(x
ì
1)),x,3)
¸
expand(taylor(x/(x
ù
(x
ì
1)),
x,4)/x,x)
¸
Summary of Contents for Voyage 200
Page 36: ...Getting Started 36 D B D B Press Result ...
Page 45: ...Getting Started 45 3 0 D B D D B D Press Result ...
Page 46: ...Getting Started 46 D 2 0 0 2 D B Scroll down to October and press Press Result ...
Page 60: ...Getting Started 60 B D Press Result ...
Page 139: ...Previews 139 8 Complete the operation Press 2 d Steps and keystrokes Display 5 f 2 ...
Page 453: ...Differential Equation Graphing 453 ...
Page 468: ...Tables 468 ...
Page 777: ...Activities 777 ...