232
6
F
2
S
0
8
5
0
4.3 Personal Computer Interface
The relay can be operated from a personal computer using an RS232C port on the front panel.
On the personal computer, the following analysis and display of the fault voltage and current are
available in addition to the items available on the LCD screen.
•
Display of voltage and current waveform:
Oscillograph, vector display
•
Symmetrical component analysis:
On arbitrary time span
•
Harmonic analysis:
On arbitrary time span
•
Frequency analysis:
On arbitrary time span
4.4 Relay Setting and Monitoring System
The Relay Setting and Monitoring (RSM) system is a system that retrieves and analyses the data
on power system quantities, fault and event records and views or changes settings in individual
relays via a telecommunication network using a remote PC.
For the details, see the separate instruction manual "PC INTERFACE RSM100".
Figure 4.4.1 shows the typical configuration of the RSM system via a protocol converter G1PR2.
The relays are connected through twisted pair cables, and the maximum 256 relays can be
connected since the G1PR2 can provide up to 8 ports. The total length of twisted pair wires
should not exceed 1200 m. Relays are mutually connected using an RS485 port on the relay rear
panel and connected to a PC RS232C port via G1PR2. Terminal resistor (150 ohms) is connected
the last relay. The transmission rate used is 64 kbits/s.
Figure 4.4.2 shows the configuration of the RSM system with Ethernet LAN (option). The relays
are connected to HUB through UTP cable using RJ-45 connector at the rear of the relay. The
relay recognizes the transmission speed automatically.
In case of the optional fiber optic interface (option), the relays are connected through
graded-index multi-mode 50/125
µ
m or 62.5/125
µ
m type optical fiber using ST connector at the
rear of the relay.
G1PR2
Figure 4.4.1 Relay Setting and Monitoring System (1)
Twisted paired
cable
www
. ElectricalPartManuals
. com
Summary of Contents for GRL100-701B
Page 329: ... 328 6 F 2 S 0 8 5 0 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...
Page 339: ... 338 6 F 2 S 0 8 5 0 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...
Page 351: ... 350 6 F 2 S 0 8 5 0 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...
Page 381: ... 380 6 F 2 S 0 8 5 0 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...
Page 413: ... 412 6 F 2 S 0 8 5 0 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...
Page 417: ... 416 6 F 2 S 0 8 5 0 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...
Page 453: ... 452 6 F 2 S 0 8 5 0 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...
Page 457: ... 456 6 F 2 S 0 8 5 0 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...
Page 473: ...w w w E l e c t r i c a l P a r t M a n u a l s c o m ...