40
M
a
n
u
a
l
la
n
g
u
a
g
e
:
P
=
P
o
rt
u
g
u
e
s
e
E
=
E
n
g
lish
S
=
S
p
a
n
ish
O
p
ti
o
n
s
:
S
=
st
a
n
d
a
rd
O
=
w
it
h
o
p
ti
o
n
s
(r
e
fe
r
to
n
o
te
)
E
n
cl
o
su
re
d
e
g
re
e
o
f
p
ro
te
c
ti
o
n
:
B
la
n
k
=
S
ta
n
d
a
rd
N
4
=
N
E
M
A
4
IP
5
6
(R
e
fe
r
to
ch
a
p
te
r
8
)
H
O
W
T
O
S
P
E
C
IF
Y
T
H
E
C
F
W
-0
9
M
O
D
E
L
:
C
F
W
-0
9
0
0
1
6
T
3
8
4
8
E
O
_
_
_
_
_
_
_
_
_
_
_
_
_
_
Z
K
e
y
p
a
d
(H
M
I)
:
B
la
n
k
=
S
ta
n
d
a
rd
IL
=
K
e
y
p
a
d
L
E
D
d
is
p
la
y
o
n
ly
S
I
=
w
it
h
o
u
t
k
e
y
p
a
d
(R
e
fe
r
to
n
o
te
)
B
ra
k
in
g
:
B
la
n
k
=
S
ta
n
d
a
rd
R
B
=
R
e
g
e
n
e
ra
ti
ve
C
o
n
v
e
rt
e
r
(A
c
ti
ve
F
ro
n
t
e
n
d
u
n
it
).
D
B
=
D
y
n
a
m
ic
B
ra
k
in
g
(R
e
fe
r
to
ch
a
p
te
r
8
)
E
x
p
a
n
si
o
n
B
o
a
rd
s:
B
la
n
k
=
S
ta
n
d
a
rd
A
1
=
E
B
A
B
o
a
rd
C
o
m
p
le
te
B
1
=
E
B
B
B
o
a
rd
C
o
m
p
le
te
C
1
=
E
B
C
1
B
o
a
rd
C
o
m
p
le
te
E
1
=
E
B
E
B
o
a
rd
c
o
m
p
le
te
P
1
=
P
L
C
1
.0
1
B
o
a
rd
P
2
=
P
L
C
2
.0
0
B
o
a
rd
R
e
fe
r
to
c
h
a
p
te
r
8
fo
r
o
th
e
r
C
o
n
fi
g
u
ra
ti
o
n
s
F
ie
ld
b
u
s
C
o
m
m
u
n
ica
ti
o
n
B
o
a
rd
s:
B
la
n
k
=
S
ta
n
d
a
rd
D
N
=
D
e
v
ic
e
N
e
t
P
D
=
P
ro
fi
b
u
s
D
P
D
D
=
D
e
vi
ce
N
e
t
P
ro
fi
le
E
N
=
E
th
e
rN
e
t/
IP
V
1
=
P
ro
fib
u
s
D
P
-V
1
S
p
e
c
ia
l
H
a
rd
w
a
re
:
B
la
n
k
=
S
ta
n
d
a
rd
H
N
=
W
ith
o
u
t
D
C
L
in
k
in
d
u
c
to
r
(o
n
ly
v
a
lid
fo
r
5
0
0
-6
9
0
V
a
n
d
6
6
0
-6
9
0
V
m
o
d
e
ls
)
H
D
=
D
C
L
in
k
s
u
p
p
ly
(r
e
fe
r
to
c
h
a
p
te
r
8
)
H
C
,
H
V
=
D
C
L
in
k
in
d
u
c
to
r
(R
e
fe
r
to
c
h
a
p
te
r
8
)
(R
e
fe
r
to
n
o
te
)
2
2
0
-2
3
0
V
:
0
0
0
6
=
6
A
0
0
0
7
=
7
A
0
0
1
0
=
1
0
A
0
0
1
3
=
1
3
A
0
0
1
6
=
1
6
A
0
0
2
4
=
2
4
A
0
0
2
8
=
2
8
A
0
0
4
5
=
4
5
A
0
0
5
4
=
5
4
A
0
0
7
0
=
7
0
A
0
0
8
6
=
8
6
A
0
1
0
5
=
1
0
5
A
0
1
3
0
=
1
3
0
A
3
8
0
-4
8
0
V
:
0
0
0
3
=
3
.6
A
0
0
0
4
=
4
A
0
0
0
5
=
5
.5
A
0
0
0
9
=
9
A
0
0
1
3
=
1
3
A
0
0
1
6
=
1
6
A
0
0
2
4
=
2
4
A
0
0
3
0
=
3
0
A
0
0
3
8
=
3
8
A
0
0
4
5
=
4
5
A
0
0
6
0
=
6
0
A
0
0
7
0
=
7
0
A
0
0
8
6
=
8
6
A
0
1
0
5
=
1
0
5
A
0
1
4
2
=
1
4
2
A
0
1
8
0
=
1
8
0
A
0
2
1
1
=
2
1
1
A
0
2
4
0
=
2
4
0
A
0
3
1
2
=
3
1
2
A
0
3
6
1
=
3
6
1
A
0
4
5
0
=
4
5
0
A
0
5
1
5
=
5
1
5
A
0
6
0
0
=
6
0
0
A
T
h
re
e
-p
h
a
s
e
p
o
w
e
r
s
u
p
p
ly
.
P
o
w
e
r
s
u
p
p
ly
v
o
lt
a
g
e
:
3
8
4
8
=
3
8
0
-4
8
0
V
2
2
2
3
=
2
2
0
-2
3
0
V
5
0
6
0
=
5
0
0
-6
0
0
V
5
0
6
9
=
5
0
0
-6
9
0
V
6
6
6
9
=
6
6
0
-6
9
0
V
5
0
0
-6
0
0
V
:
0
0
0
2
=
2
.9
A
0
0
0
4
=
4
.2
A
0
0
0
7
=
7
A
0
0
1
0
=
1
0
A
0
0
1
2
=
1
2
A
0
0
1
4
=
1
4
A
0
0
2
2
=
2
2
A
0
0
2
7
=
2
7
A
0
0
3
2
=
3
2
A
0
0
4
4
=
4
4
A
0
0
5
3
=
5
3
A
0
0
6
3
=
6
3
A
0
0
7
9
=
7
9
A
5
0
0
-6
9
0
V
:
0
1
0
7
=
1
0
7
A
0
1
4
7
=
1
4
7
A
0
2
1
1
=
2
1
1
A
0
2
4
7
=
2
4
7
A
0
3
1
5
=
3
1
5
A
0
3
4
3
=
3
4
3
A
0
4
1
8
=
4
1
8
A
0
4
7
2
=
4
7
2
A
6
6
0
-6
9
0
V
:
0
1
0
0
=
1
0
0
A
0
1
2
7
=
1
2
7
A
0
1
7
9
=
1
7
9
A
0
2
2
5
=
2
2
5
A
0
2
5
9
=
2
5
9
A
0
3
0
5
=
3
0
5
A
0
3
4
0
=
3
4
0
A
0
4
2
8
=
4
2
8
A
N
o
te
:
-
F
o
r
ra
te
d
o
u
tp
u
t
c
u
rr
e
n
t
s
p
e
c
if
ic
a
ti
o
n
o
f
v
a
ri
a
b
le
to
rq
u
e
(V
T
),
re
fe
r
to
c
h
a
p
te
r
9
.
-
T
h
e
ra
te
d
o
u
tp
u
t
c
u
rr
e
n
t
in
d
ic
a
te
d
fo
r
th
e
m
o
d
e
ls
5
0
0
-6
9
0
V
is
o
n
ly
v
a
lid
fo
r
5
0
0
V
to
6
0
0
V
s
u
p
p
ly
.
-
F
o
r
ra
te
d
o
u
tp
u
t
c
u
rr
e
n
t
s
p
e
c
if
ic
a
ti
o
n
(C
T
a
n
d
V
T
)
o
f
th
e
m
o
d
e
ls
w
it
h
s
u
p
p
ly
v
o
lt
a
g
e
h
ig
h
e
r
th
a
n
6
0
0
V
,
re
fe
r
to
c
h
a
p
te
r
9
.
N
o
te
:
T
h
e
o
p
ti
o
n
fi
e
ld
(S
o
r
O
)
d
e
fi
n
e
s
if
th
e
C
F
W
-0
9
is
a
s
ta
n
d
a
rd
v
e
rs
io
n
o
r
if
it
is
e
q
u
ip
p
e
d
w
it
h
a
n
y
o
p
ti
o
n
a
l
d
e
v
ic
e
s
.
If
th
e
s
ta
n
d
a
rd
v
e
rs
io
n
is
re
q
u
ir
e
d
,
th
e
c
o
d
e
e
n
d
s
h
e
re
.
T
h
e
m
o
d
e
l
c
o
d
e
n
u
m
b
e
r
a
lw
a
y
s
h
a
s
th
e
le
tt
e
r
Z
a
t
th
e
e
n
d
.
F
o
r
e
x
a
m
p
le
:
C
F
W
0
9
0
0
4
5
T
2
2
2
3
E
S
Z
=
S
ta
n
d
a
rd
4
5
A
C
F
W
-0
9
in
v
e
rt
e
r
-
th
re
e
p
h
a
s
e
in
p
u
t
a
t
2
2
0
-2
3
0
V
,
w
it
h
th
e
M
a
n
u
a
l
in
E
n
g
lis
h
.
If
th
e
C
F
W
-0
9
is
e
q
u
ip
p
e
d
w
it
h
a
n
y
o
p
ti
o
n
a
l
d
e
v
ic
e
s
,
y
o
u
m
u
s
t
fi
ll
o
u
t
th
e
fi
e
ld
s
in
a
c
c
o
rd
a
n
c
e
to
th
e
o
p
ti
o
n
a
l
d
e
v
ic
e
s
d
e
s
ir
e
d
in
th
e
c
o
rr
e
c
t
s
e
q
u
e
n
c
e
u
p
to
th
e
la
s
t
o
p
ti
o
n
a
l
d
e
v
ic
e
d
e
s
ir
e
d
,
th
e
n
th
e
m
o
d
e
l
c
o
d
e
n
u
m
b
e
r
is
c
o
m
p
le
te
d
w
it
h
th
e
le
tt
e
r
Z
.
T
h
u
s
,
fo
r
in
s
ta
n
c
e
,
if
a
p
ro
d
u
c
t
o
f
th
e
e
x
a
m
p
le
a
b
o
v
e
is
re
q
u
ir
e
d
w
it
h
a
n
E
B
A
e
x
p
a
n
s
io
n
b
o
a
rd
,
in
d
ic
a
te
:
C
F
W
0
9
0
0
4
5
T
2
2
2
3
E
O
A
1
Z
=
4
5
A
C
F
W
-0
9
in
v
e
rt
e
r
–
th
re
e
-p
h
a
s
e
in
p
u
t
a
t
2
2
0
-2
3
0
V
,
w
it
h
th
e
m
a
n
u
a
l
in
E
n
g
lis
h
a
n
d
w
it
h
th
e
o
p
ti
o
n
a
l
E
B
A
.0
1
b
o
a
rd
.
O
u
tp
u
t
ra
te
d
cu
rr
e
n
t
-
co
n
st
a
n
t
to
rq
u
e
C
T
:
W
E
G
S
e
ri
e
s
0
9
F
re
q
u
e
n
c
y
In
v
e
rt
e
r
S
p
e
ci
a
l
S
o
ft
w
a
re
:
B
la
n
k
=
S
ta
n
d
a
rd
S
1
to
S
n
=
S
p
e
ci
a
l
S
o
ft
w
a
re
V
e
rsi
o
n
S
F
=
M
e
ta
sy
s
N
2
P
ro
to
co
l
S
Q
=
S
p
e
ci
a
l
v
e
rs
io
n
fo
r
D
e
v
ic
e
N
e
t
D
ri
v
e
P
ro
fi
le
K
it
(i
n
d
ica
te
o
p
ti
o
n
D
D
fo
r
th
e
F
ie
ld
b
u
s
C
o
m
m
u
n
ic
a
tio
n
B
o
a
rd
)
E
n
d
o
f
C
o
d
e
(r
e
fe
r
to
n
o
te
)