background image

TYP E  CO  CIRCUIT  OP ENING  R E LAY 

OPERAT!OM  I N D I CATOR " 

AUX.  CURRENT 
TRANSF.  SECOIIDARY 

MOTE:  TERM.  2 AMD 8 ARE TD 8E 

.IUMPERED AT RELAY CASE 

INTERNAL  SCHEMAT IC 

FRONT  VIEW 

DE-1011 

-------------

COIITACTOR  SWITCH 

AUX.  CURRENT 
TRANSF.  PRH4ARY 

IIIDUCTlOII UNIT 

CHASS I S   OPERATED 
SHORTI N G  

SWITCII 

URREIIT TEST .IAC• 

TERMINAL 

l83A055 

Fig.  1 .   Internal  Schematic  of  the  Circuit  Opening  Type 

CO  Relay  in  Type  FT2 1  Case. 

ated  clapper  type  devic e .   A  magnetic  armature ,  to 
which  leaf-spring  mounted  c ontacts  are  attached,  is 
attracted  to  the  magnetic  core  upon  energization  of 

the  switch. 

When  the  switch  closes,  the  moving 

contacts  bridge  two  stationary  c ontacts  completing 

the  trip  circuit. 

Also,  during  the  operation ,  two 

fingers  on  the  armature  deflect  a  spring  located  on 
the  front  of  the  switch  which  allows  the  operation 

indicator  target  to  drop. 

A  core  screw  accessible  from  the  top  of  the 

switch  provides  the  adjustable  pickup  range. 

CHARAC T E R I STICS 

The  relays  are  available  in  the  following  c urrent 

range : 

AUX. 

CUIIEIIT 

TRAitSF . 

SECOIIDARY 

TEST 

S lli i TCH 

MOTE: 

TERN. 

2  AIID  8  AlE  TO 

IE 

JUMPUED 

AT  IIU.Y 

CAll 

INTERNAL  SCMEMATIC 

DE-lOll 
COIITACTOR 

SIITCII 

AUX.  CURIEIIT 
TRAIISF.  PRIM. 

IIIDICATI.IIG 
IIISTA.IITUEOtiS 

T R I P   U II I T  

I II

DU

C

T

IO

M

LUI

I

Clt.lJSIS  OPEilAT£0 
IKOITIMG  SWITCH 

CUIIfMT  TEST  .IACI 

l83A054 

Fig.  2 .   Internal  Schematic  of  the  Circuit  Opening  Type 

CO  Relay,  With  Indicating  Instantaneous  Trip, 

in  Type  FT21  Case. 

RANGE 

4 - 12 

TAPS 

10 

12 

The  circuit-opening  relay  i s   recommended  only 

in  the  4  to 

12 

ampere  range.  A  lower  range  is  not 

desirabl e  because  the  burden  of  a  low-range  trip 

coil  is  too  heavy  on  the  current  transformer.  One 

trip  coil  i s  required  for  each  relay. 

The  burden  on  the  current  transformer  at 

-± 

amp s. 

i s   4.6 

V A  

with  contacts 

l l T 

and 

CO 

cl osed  and 

5 . 7  

V A  

with  contacts 

open. 

The  time  vs.  current  characteri sti c s   are  shown 

in  Figs.  3  to  9.  These  characteri stics  give  the  con­

tact  clo sing  time  for  the  various  time  dial  settings 
when  the  indicated  multipl es  of  tap  value  current 

are  applied to  the  rel ay. 

www 

. ElectricalPartManuals 

. com 

Summary of Contents for C0-11

Page 1: ...ain pole flux The out of phase fluxes thus produced in the air gap cause a contact closing torque The electromagnets for the types C0 2 and CO Il relays have a main coil consisting of a tapped primary winding and a secondary winding Two identical coils on the outer legs of the lami nation structure are connected to the main coil secondary in a manner so that the combination of all the fluxes produ...

Page 2: ...rip circuit Also during the op eration two fingers on the armature deflect a spring located on the front of the switch which allows the operation indicator target to drop A core screw accessible from the top of the switch provides the adjustable pickup range 2 OPEUTIOII IIIOICATOR AUX CURII EIIT TilUSF SECOJIDARY TEST SifiiiTCH INTERNAL SCHENAT IC DE ION COHTACTOR SWITCH AUX CURREIH TRAMSF PRht IM...

Page 3: ...4 38 7 262 800 2 5 4 0 110 55 5 13 39 8 280 920 3 0 4 4 110 51 5 37 42 8 312 1008 2 6 3 5 4 8 110 47 5 53 42 8 329 1120 4 0 5 2 110 45 5 72 46 0 360 1216 5 0 5 6 110 41 5 90 50 3 420 1500 6 0 6 0 110 37 6 54 54 9 474 1800 4 0 7 3 230 65 4 92 39 1 268 848 5 0 8 0 230 50 5 20 42 0 305 1020 6 0 8 8 230 47 5 34 44 1 330 1128 4 12 7 0 9 6 230 46 5 35 45 8 364 1260 8 0 10 4 230 43 5 86 49 9 400 1408 10 ...

Page 4: ...E RELAY 0 AMPERE RANGE 0 5 2 5 2 6 4 12 CONTINUOUS RATING TAP AMPERES 0 5 2 7 0 6 3 1 0 8 3 7 1 0 4 1 1 5 2 0 2 5 2 2 5 3 3 5 4 5 6 4 5 6 7 8 10 12 5 7 6 8 7 7 8 8 8 9 7 10 4 11 2 12 5 13 7 16 18 8 19 3 20 8 22 5 25 28 ONE SECOND RATING AMPERES 88 88 88 88 88 88 88 230 230 230 230 230 230 230 460 460 460 460 460 460 460 POWER FACTOR ANGLE q 68 67 66 64 61 58 56 66 63 63 62 61 59 58 64 61 60 58 55 ...

Page 5: ... 2 21 3 21 8 22 6 23 6 24 8 27 8 31 4 AT 10 TIMES TAP VALUE CURRENT LI 0 9 132 134 142 150 170 200 228 136 142 149 157 164 180 198 146 158 172 190 207 248 292 AT 20 TIMES TAP VALUE CURRENT LI 0 91 350 365 400 440 530 675 800 360 395 430 470 500 580 660 420 480 550 620 700 850 1020 TYPE C0 11 RELAY POWER FACTOR ANGLE 36 34 30 27 22 17 16 32 30 27 24 23 20 20 29 25 22 20 18 17 16 60 HERTZ VOLT AMPER...

Page 6: ... 8 r E fitf1 EE famm 6 4 K r f 8 3 U i i_l 4 t f 2 t 1 iN t l 1 t 1 r I_ l i i t 2 _ _ _ _ I 1 f t r t il f j I 1 kK i j i r 1 I I i I I i i I I I i I 1 I j i I I _r L t 1 08 _ h r t 06 04 0 3 02 01 t t i i I I 1 t t t 1 2 ii L l 1 c _ __c__ ___ _ _ __ _ _ I II C c L _ _ _ I 1 t i c__ f El f I r J 1 I _ i I i i I i i 1 I I i I I t I i m i i t l c cc lc _ _ _ _ j_ _r r i i i 1 Jr 1 1 1 r 1 i i 1 r ...

Page 7: ...i l i l fr r I I 1 I I II I I I 1 I I I I I I _l _ j I I lj I t t 1 I r r r f f L 1 1 1 __ _J _L R 1 _ _ _ I I i _ I 1 1 6 l o N 5 I j 3 ti l o o 2 1 1 2 I I 2 j I I I I I i f t T I ME D I AL j t t r _ 11 ooo 10 i 9 I ro a J1 oi I J No 7 I T I r l r 1 1 3 jjl j I r 1 lo o I rr 5 6 MULTIPLES Of TAP VALU E CU RREN T Fig 4 Typical Time Curve of the Type C0 5 Relay 1 I I I I I i I I i I I I I I j I I ...

Page 8: ...RELAY 50 60 HERTZ t l i t l rt f N t f W t f t t 1 tt rttt Tl ME 0 I AL SETT I NG f 8 5 6 7 8 9 10 MULTIPLES OF TAP VALU E CUR RENT Fig 5 Typical Time Curve of the Type C0 6 Relay 12 114 16 18 20 Curve 418246 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 9: ... 1 I I 9 I I I I T IME 1 1 1 I i 10 I 1 oo I I I L 41 103H TYPICAL TIME CURVES TYPE C0 7 OVERCURRENT RELAY 50 60 HERTZ r lt 1 I D I AL SETT I N G r r 1 o 1 o I I 1 o t r r r r 3 5 6 7 8 9 10 12 1 16 lB 20 MULT I PLES OF TAP VALUE CURRENT Fig 6 Typical Time Curve of the Type C0 7 Relay Curve 418247 9 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 10: ... 11 1X 2 _ rlol _l I N No o TYPICAL TIME CURVES TYPE C0 8 OVERCURRENT RELAY 50 60 HERTZ I I I I I TIM E DIAL SETTING J 1 1 11 10 9 ro r fooo I X 1 oo _ r _ r I 1 1 r i i oo I r I 3 5 o 7 a 9 10 12 14 16 18 20 MULTIPLES OF TAP VALUE CU RR ENT Curve 418248 Fig 1 Typical Time Curve of the Type C0 8 Relay w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 11: ...RTZ f 1 1 1 I I t t t t Hf 1 jl j1t t 1 _r k f Jt _ 1 1 T l ME 0 I AL SETT I NG 1 I I 1 J 2 3 ij 5 6 7 8 MU L T I PLES OF TAP VALUE CURRENT 9 10 Fig 8 Typical Time Curve of the Type C0 9 Relay 12 1 16 18 20 Curve 418249 11 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 12: ...WESTINGHOUSE ELECTRIC CORPORATION RELAY INSTRUMENT DIVISION CORAL SPRINGS FL 33065 Printed in U S A w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 13: ...notes change from superseded Issue flux The out of phase fluxes thus produced in the air gap cause a contact closing torque The electromagnets for the types C0 2 and C0 1 1 relays have a main coil consisting of a tapped primary winding and a secondary winding Two identical coils on the outer legs of the lamination structure are connected to the main coil secondary in a manner so that the combinati...

Page 14: ...spring located on the front of the switch which allows the operation indicator target to drop A core screw accessible from the top of the switch provides the adjustable pickup range 2 INTERNAL SCHEMATIC OE JOH COHTACTOR SW I TCH OPERATION IND ICATOR AUX CURRENT TRAHSF Pill AUX Ci JIIUHT TRAHSF SECONDARY INDICATING INSTAIHAHEOUS TR IP UltiT IWUCTIOM UII IT CMASSIS OPEIIATED SHORTING SW ITCII TEST S...

Page 15: ... 04 38 7 262 800 2 5 4 0 1 10 55 5 13 39 8 280 920 3 0 4 4 1 10 51 5 37 42 8 3 1 2 1008 2 6 3 5 4 8 1 10 47 5 53 42 8 329 1 120 4 0 5 2 1 10 45 5 72 46 0 360 1216 5 0 5 6 1 10 41 5 90 50 3 420 1500 6 0 6 0 1 10 37 6 54 54 9 474 1800 4 0 7 3 230 65 4 92 39 1 268 848 5 0 8 0 230 50 5 20 42 0 305 1020 6 0 8 8 230 47 5 34 44 1 330 1 128 4 12 7 0 9 6 230 46 5 35 45 8 364 1260 8 0 10 4 230 43 5 86 49 9 ...

Page 16: ... M O D E R AT E L Y I NV E R S E T I ME R E L A Y VOLT AMPERES 270 288 325 360 462 548 630 308 342 381 417 448 540 624 376 450 53 1 611 699 880 1056 CONTINUOUS ONE SECOND POWER AT AT 3 TIMES AT 10 TIMES AT 20 TIMES RATING AMPERES 2 7 3 1 3 7 4 1 5 7 6 8 7 7 8 8 8 9 7 10 4 11 2 12 5 13 7 16 18 8 19 3 20 8 22 5 25 28 RATING AMPERES 88 88 88 88 88 88 88 230 230 230 230 230 230 230 460 460 460 460 460...

Page 17: ... 228 136 142 149 157 164 180 198 146 158 172 190 207 248 292 675 800 360 395 430 470 500 580 660 420 480 550 620 700 850 1020 VOLT AMPERES CONTINUOUS ONE SECOND POWER AT AT 3 TIMES AT 10 TIMES AT 20 TIMES RATING AMPERES 1 7 1 9 2 2 3 5 3 0 3 5 3 8 7 0 7 8 8 3 9 0 10 0 1 1 0 12 0 14 16 17 18 20 22 26 RATING AMPERES 56 56 56 56 56 56 56 230 230 230 230 230 230 230 460 460 460 460 460 460 460 FACTOR ...

Page 18: ... l O co 6 1 SEC I I I I I I 1 J 1 1 J r J 1 1 ll 1 I 1 1 j 1 I 1 f I N I I i l 1 J I 1 I 1 i 1 1 1 i I I MULT I PLES O F TAP VALUE CURRENT Fig 3 Typical Time Curves o f the Type C0 2 Relay CURVE l 182 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 19: ... I I I i I I I I i I I I I I I I I I I I II I I I I l I I I I l I I I I I I r I i I I 1 j I I i I i I 1 1 I Ll I I J I I I I 1 I I I II I l i I i I I i I I I l l I I I I I I JLI II I l I II i I I I I I i I I I I _l I l I i I I I j_ I I I I i I I I I I l l I I I I I I I I I I 1 i I I I I I l l l I I I l I I i i I I l I I I l I 1 1 I 1 1 i I I I i I I I I I I i I 1 I I I I i I I j_ l I lll ll 1 1 lJ...

Page 20: ...I 1 1 I i I 1 1 I T I ME I TT 1 1 N 10 1 _ N 1 1 1 r J _ 9 _ 8 I 1 i 7 I 6 1 o 1 i N 5r 4 1 I X I 4 3 ITi Jt r m 2 h 1 J _ d l rtt l 1 r 112 _ l 1 Hf f I tf I f l 2 3 5 I r o I I I s o_ o I I I I I I I I I Ill I D I AL SETT I NG I 6 7 8 9 10 12 114 16 18 20 MU L T I P L E S O F TAP VALU E CURRENT Fig 5 Typical Time Curves o f the Type C0 6 Relay w w w E l e c t r i c a l P a r t M a n u a l s c o ...

Page 21: ...i t l 1 t l r i j t N J 1 1 1 t i 4 1 1 l 5 T T H rl 1 l H 1 ij 1 __ _ ___ _ f 3 roo l 2 I I 2 1 _ 1 1 1 I I __ A J1 I _l N I 1 7 N 6 5 I ij 3 2 T I ME N 1 11 1 I I I ll _k IN N 10 1 9 ooi 8 I I n I I D I AL SETT I NG I I I t I j i r r _ __ _ r MULT I PLES O F TAP VALUE CURRENT Fig 6 Typical Time Curves of the Type C0 7 Relay 9 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 22: ...u f 7 r rr r rrn MTMTtrn rrm C U R VE I8 2 TYP I CAL T I ME CU RVES TYPE co a 2 1 I I I 3 lt 5 6 7 8 MULT I PLES OF TAP VALUE CURRENT OVER CURREN T RELAY 5 0_ 0 HERT Z 9 10 12 14 16 18 20 Fig 7 Typical Time Curves of the Type C 0 8 Relay w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 23: ... 0 HERT Z I t llt H H ffi t H a t N t t tt t7 rt H i ttt t t l t 1 1 H t 1 f f lf f l l a f H t l t H l tt H Tttt ft H ct tt l t t t t t t t l 1 r 1 r m ffn H H t tt rrH r I I 1 I I H V t Y 4 r 4 1 0 1 0 I AL SETT I N G r 1 o 2 3 5 6 7 8 9 10 12 1 16 18 20 MU LT I PLES OF TAP VALU E CUR REN T Fig 8 Typical Time Curves of the Type C0 9 Relay 1 1 w w w E l e c t r i c a l P a r t M a n u a l s c o m...

Page 24: ... o 0 03 0 02 0 01 I 2 l 5 6 7 8 9 10 1 1 1 1 1 1 l 1 l 1 1 l 1 1 I 1 1 r i I y l l 1 1 I 2 6 7 8 9 10 r r f MYLT I PLES Of TAr YALij CwiKENT 20 lO 0 _ _I r 1 f 20 30 o 1 1 10 9 7 E 5 3 2 1 2 2888655 TYP I CAL T I ME CURVES TYPE C0 1 1 OVER CURRENT RELAY 5 0 _ 0 HERT Z TIM DIAL SETT 11 Fig 9 Typical Time Curves of the Type C0 1 1 Re lay w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 25: ...urvc s CAUTION Since the tap block connector screw carries oper ating current be sure that the screw is turned tight In order to avoid opening the current transformer cir cuits when changing taps under load connect the spare connector screw in the desired tap position before removing the other tap screw from the original 1 2 3 51 1 cs DEV ICE NUM ER CHART 51 DVERCURRENT RELAY TYPE CD 5 1 8 Sl PH I...

Page 26: ...half of its normal deflection Therefore with the stationary contact resting against the backstop the index mark is offset to the right of the 0 mark by approximately 020 The placement of the various time dial positions in line with the index mark will give operating times as shown on the respective time current curves For typ e C0 1 1 rel ay only the 1 30 times tap valu e operating time from the n...

Page 27: ...ue of the relay is most convenientlY made with the damping magnet removed With the time dial set on 0 wind up the spiral spring by means of the spring adjuster until approxi matelY 6 3 4 convolutions show Set the relay on the minimum tap setting the time dial to position 6 Adjust the control spring tension so that the moving contact will leave the backstop at tap value current l Oo c and will retu...

Page 28: ...s sufficient current a c through the operati on md1cator to just operate it This val ue of current shoul d not be greater than 3 am peres The operation mdicator target should drop freely To change pickup adjust the core screw 1 6 6 INDICATING INSTANTANEOUS TRIP UNIT liT Tl1e making of the c ontacts and target indication shoul d occ ur at approXImately the same mstant Posi tiOn the stationary conta...

Page 29: ... OPERATING CURRENT OPERATING RELAY DIAL MULTIPLES OF TIME MULTIPLES OF TIME TYPE POSITION TAP VALUE SECONDS TAP VALUE SECOND S C0 2 6 3 0 57 2 0 0 22 co s 6 2 37 8 0 1 0 14 30 C0 6 6 2 2 46 2 0 1 19 C0 7 6 2 4 27 2 0 1 1 1 C0 8 6 2 13 35 2 0 1 1 1 co g 6 2 8 87 2 0 0 65 C0 1 1 6 2 1 1 27 2 0 0 24 6 6 Fo r 50 hertz C0 1 1 relay 20 times op erating tim e limits are 0 24 10 5 1 7 w w w E l e c t r i ...

Page 30: ... l 3 18 R 80 98 PAN E L LOCAT I O N S EM I FLUSH MTG PANEL CUTOUT 8 DR I LL i t G PROJ E C T I O N MTG FOR SE M I F L U S H MTG I DIA 2 HOLES 250 016 397 l 6 35 0 I 1 031 tl 031 1 031 t 1 031 1 375 R 26 19 26 19 1 26 19 26 19 I 9 5 3 I I 5 7D 7901 I L I Fig 1 2 Outline Drilling P lan lor the Circuit Opening CO Relay in the Type FT21 Case 1 8 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 31: ...w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 32: ...W E S T I N G H O U S E E L E C T R I C C O R P O R A T I O N R E LAY I N STR U M E NT D IVI S I O N N EWAR K N J Printed in U S A w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 33: ...e from superseded i ssue flux The out of phase fluxes thus produced in the air gap cause a contact closing torque The electromagnets for the types co 2 and C0 1 1 relays have a main coil consisting of a tapped primary winding and a secondary winding Two identical coils on the outer legs of the lamination structure are connected to the main c oil secondary in a manner so that the combination of all...

Page 34: ... CHARACTERISTICS The relays are available in the following current range 2 AUX CUIIEIIT TRAitSF SECOIIDARY TEST SlliiTCH MOTE TERN 2 AIID 8 AlE TO IE JUMPUED AT IIU Y CAll INTERNAL SCMEMATIC DE lOll COIITACTOR SIITCII AUX CURIEIIT TRAIISF PRIM IIIDICATI IIG IIISTA IITUEOtiS TRIP UIIIT I IIDUCTIOM LUIIT Clt lJSIS OPEilAT 0 IKOITIMG SWITCH CUIIfMT TEST IACI l83A054 Fig 2 Internal Schematic of the Ci...

Page 35: ...2 0 3 1 1 10 59 5 04 38 7 262 800 2 5 4 0 110 55 5 13 39 8 280 920 3 0 4 4 1 10 51 5 37 42 8 312 1008 2 6 3 5 4 8 1 10 47 5 53 42 8 329 1 120 4 0 5 2 110 45 5 72 46 0 360 1216 5 0 5 6 110 41 5 90 50 3 420 1500 6 0 6 0 110 37 6 54 54 9 474 1800 4 0 7 3 230 65 4 92 39 1 268 848 5 0 8 0 230 50 5 20 42 0 305 1020 6 0 8 8 230 47 5 34 44 1 330 1128 4 12 7 0 9 6 230 46 5 35 45 8 364 1260 8 0 10 4 230 43 ...

Page 36: ...88 325 360 462 548 630 308 342 381 4 17 448 540 624 376 450 531 611 699 880 1056 C 0 7 M O D E R AT E L Y INV E R S E T I M E R E L A Y CONTINUOUS ONE SECOND POWER AT VOLT AMPERES AT 3 TIMES AT 10 TlMES AT 20 TlMES RATING AMPERES RATING AMPERES FAC IDR TAP VALUE TAP VALUE TAP VALUE TAP VALUE 2 7 3 1 3 7 4 1 5 7 6 8 7 7 8 8 8 9 7 10 4 1 1 2 1 2 5 13 7 16 18 8 19 3 20 8 22 5 25 28 88 88 88 88 88 88 ...

Page 37: ... 64 2 75 2 38 2 46 2 54 2 62 2 73 3 00 3 46 T Y P E C0 1 1 R E LAY POWER AT FACTOR TAP VALUE ANGLE CURRENT 36 34 30 27 22 17 16 32 30 27 24 23 20 20 29 25 22 20 18 17 16 0 72 0 75 0 81 0 89 1 13 1 30 1 48 0 73 0 78 0 83 0 88 0 96 1 07 1 23 0 79 0 89 1 02 1 10 1 23 1 32 1 8 21 21 21 1 21 2 22 23 5 24 8 21 21 1 21 5 22 22 7 24 25 2 21 3 21 8 22 6 23 6 24 8 27 8 31 4 132 134 142 150 170 200 228 136 1...

Page 38: ...ES TYPE C0 2 OVER CURRENT RELAY I 50 60 CYCL ES I I I I I I I I I I I I 1 1 I I T I ME D I AL SETT I N G 1 1 I I I 10 _l lo l g I X I 11 8 i j N 7 l ioo I 6 i o 5 I 1 o I i 4 I I I too I 3 I r 1 I 1 o i 2 r r 1 I I I I 1 2 2 3 5 6 7 8 9 10 12 11 16 18 20 MUL T I PL ES OF TAP VALUE CURRENT Fig 3 Typical Time Curves of the Type C0 2 Relay w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 39: ... TYP I CAL T I ME cuRVES TYPE C0 5 ovER CU RREN T RElAY 50 60 CYC L ES I I I I II I I IT J I I I I i I I I I I II I I I I l i I I I I I i I I I i li I I I II li I I T I I m T I IT T I I I j I I I I I I I I I I T T I I I II I T IT T i r I T I I II 11 I I I 1 i I I I I i I I I I I I I I I j 1 1 I I I I I T I I T I I I I I I T I ME D I AL SETT I NG w tim I I I I I I I i II i 1 1 1 1 lo l I I I l 5 I ...

Page 40: ...4 if 1 2 1 1 1 1QN m UH 4 J f l 4 1 f J 9 1 I f J 4 j frt f ll 1 loo l f t 8 I I l 1 4 1 r f rH 1 ff 7 1 f k l F v f f 11 1 1 f H kl H o l 5 f f 1 l 2 1 1 1 h 1 t 1 t H 2 l 3 5 6 7 8 9 10 12 1 16 18 20 MUL T I P L ES O F TAP VALU E CURRENT Fig 5 Typical Time Curves of the Type C0 6 Relay w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 41: ...TYPE C0 7 I I I I O VE R CURRENT RELAY I 1 I I 1 I I I 50 60 CYCL ES I I I I I I I I I N I I I I I I i l I I I 1 T I ME D I AL SETT I N G 1 1 1 1 I I 10 1 9 e loo 7 1 o r 6 r r 5 I r l i 1 r r _ 3 t r r 2 r r _ 1 1 2 I I 2 3 5 e 1 e e 10 12 14 16 lB 20 MULT I PL ES OF TAP VALUE CU RRENT Fig 6 Typical Time Curves o f the Type C0 7 Relay 9 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 42: ... I I i I I I I I I I I I I I I I I I I I I I I I i I I I I I I 1 I I T I M E D I AL S ET T I N G I I I I II I 1 1 I I I 1 1 10 N _ I I 5 1 I I 1 1 I N 9 8 7 J 6 o I I I I _ N I I I N I I I I I N I _ roo I I I I I I I n1 1 I I I I I I I i I I X I i ll I X I f1 o No I l N I I I N I I N oo l o ll lo I t 1 l I I I _ I I 3 l 5 6 7 8 9 10 12 14 16 18 20 MULT I PLES O F TAP VALU E CURRENT Fig 7 Typical T...

Page 43: ... T I ME CURVES TYPE C0 9 I I OVER CURRENT RELAY i I 50 60 CYCLES I I 1 I I I I i I l i I I I I I I T I ME D I AL SETT I NG I 1 1 I T 10 i 9 i 1 I 8 7 N I i 6 I 5 I I l 1 3 2 I I 1 r o 1 r r r I I I 2 3 5 6 7 8 9 10 12 14 16 18 20 MU LT I P L ES OF TAP VALUE CU RREN T Fig 8 Typical Time Curves of the Type C0 9 Relay 1 1 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 44: ...0 05 0 0 0 03 0 02 0 01 1 2 1 1 i IW l l 3 li 6 7 8 9 10 W 1 l 20 30 0 2888655 TYP I CAL T I NE CURVES TYP E C0 1 1 OVER CU RRENT RELAY eo eo CYCLrs I 1 1 1 t i 0 r 2 3 6 7 8 9 10 _ _ r I 1 to 20 30 o MULT I PLES Of TAr VALUE CUiiENT 11 10 9 7 E s 3 2 1 1 Tlt4E 0 IAL SETTINii Fig 9 Typical Time Curves of the Type CO l l Re lay w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 45: ...tor screw carries oper ating current be sure that the screw is turned tight In order to avoid opening the current transformer cir cuits when changing taps under load connect the spare connector screw in the desired tap position before removing the other tap screw from the original 1 2 3 51 1 cs DEi ICE NUN8ER CHART 51 OVERCURRENT RELAY TYPE CO 51 8 51 PH 1 T P 2 PH 3 CS DE I ON CONTACTOR SWITCH I ...

Page 46: ...half of its normal deflection Therefore with the stationary contact resting against the backstop the index mark is offset to the right of the 0 mark by approximately 0 20 The placement of the various time dial po sitions in line with the index mark will give operating times as shown on the respective time current curves For typ e C0 1 1 relay only the 1 30 times tap valu e operating time from the ...

Page 47: ...rrent value of the relay i s most conveniently made with the damping magnet removed With the time dial set on 0 wind up the spiral spring by means of the spring adjuster until approxi mately 6 3 4 convolutions show Set the relay on the minimum tap setting the time dial to position 6 Adjust the control spring tension so that the moving contact will leave the backstop at tap value current l Oo c and...

Page 48: ...Pass sufficient current a c through the operation mdicator to just operate it This value of current should not be greater than 3 amperes The operation indicator targe t should drop freely To change pickup adjust the core screw 16 6 INDICATING INSTANTANEOUS TRIP UNIT liT Tl1e making of the contacts and target indication should occur at approximately the same mstant Posl tlon the stationary contact ...

Page 49: ...T OPERATING CURRENT OPERATING RELAY DIAL MULTIPLES OF TIME MULTIPLES OF TIME TYPE POSITION TAP VALUE SECONDS TAP VALUE SECONDS C0 2 6 3 0 57 2 0 0 22 co 5 6 2 37 8 0 1 0 14 30 C0 6 6 2 2 46 2 0 1 19 C0 7 6 2 4 27 20 1 1 1 CO B 6 2 13 35 20 1 11 C0 9 6 2 8 87 2 0 0 65 C0 1 1 6 2 11 27 2 0 0 24 j L For 50 cycle C0 1 1 rel ay 20 times operating time limits are 0 24 10 5 1 7 w w w E l e c t r i c a l ...

Page 50: ... ELS 19 SC RE W 16 F O IC 1 NEL USE 16 18 IUD o qo 3 2 SCREW 41 DI A IERM N 6 L AN D MOUNT I N G Dt to 1 NOTE Al L CIMEWS 0 IW I C f I f I PANE CUTOUT t DRILL Gr r OR SEt 41 F U ATG Fig 12 Outline Drilling Plan for the Circuit Opening CO Relay in the Type FT21 Case 57 D 7901 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 51: ...w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 52: ...W E S T I N G H O U S E E L E C T R I C C O R P O R A T I O N R E LAY I N STR U M E NT D IVI S I O N N EWAR K N J Printed in U S A w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Reviews: