background image

Subject to change without notice. Printed in U.S.A.

278432-YTG-A-0407

Copyright

 ©

 by York International Corp. 2007. All rights reserved.

Supersedes: 246768-YTG-B-0706 

Unitary

5005

Norman

Products

York

OK

Group

Drive

73069

APPLYING FILTER PRESSURE DROP TO 
DETERMINE SYSTEM AIRFLOW

To determine the approximate airflow of the unit with a filter in
place, follow the steps below:

1.

Select the filter type.

2.

Select the number of return air openings or calculate the
return opening size in square inches to determine the
proper filter pressure drop.

3.

Determine the External System Static Pressure (ESP)
without the filter.

4.

Select a filter pressure drop from the table based upon
the number of return air openings or return air opening
size and add to the ESP from Step 3 to determine the
total system static.

5.

If total system static matches a ESP value in the airflow
table (i.e. 0.20 w.c. (50 Pa), 0.60 w.c. (150 Pa), etc,) the
system airflow corresponds to the intersection of the
ESP column and Model/Blower Speed row.

6.

If the total system static falls between ESP values in the
table (i.e. 0.58 w.c. (144 Pa), 0.75 w.c. (187 Pa), etc.),
the static pressure may be rounded to the nearest value
in the table determining the airflow using Step 5 or calcu-
late the airflow by using the following example.

Example: For a 60,000 BTUH (17.58 kW) furnace with a bot-
tom return opening and operating on high-speed blower, it is
found that total system static is 0.58” w.c. To determine the
system airflow, complete the following steps:

Obtain the airflow values at 0.50 w.c. (125 Pa) & 0.60 w.c.
(150 Pa) ESP.

Airflow @ 0.50”: 1250 CFM (35.4 m

3

/min)

Airflow @ 0.60”: 1180 CFM (33.4 m

3

/min)

Subtract the airflow @ 0.50 w.c. (125 Pa) from the airflow @
0.60 w.c. (150 Pa) to obtain airflow difference.

1180 - 1250 = -70 CFM (-12 m

3

/min)

Subtract the total system static from 0.50 w.c. (125 Pa) and
divide this difference by the difference in ESP values in the
table, 0.60 w.c.       (150 Pa) - 0.50 w.c. (125 Pa), to obtain a
percentage.

(0.58 - 0.50) / (0.60 - 0.50) = 0.8

Multiply percentage by airflow difference to obtain airflow
reduction.

(0.8) X (-70) = -56

Subtract airflow reduction value to airflow @ 0.50 w.c. (125
Pa) to obtain actual airflow @ 0.58 in. w.c. (144 Pa) ESP.

1250 - 56 = 1194

ACCESSORIES

PROPANE (LP) CONVERSION KIT - 

1NP0347 - All Models

This accessory conversion kit may be used to convert natural
gas (N) units for propane (LP) operation. Conversions must
be made by qualified distributor or dealer personnel.

SIDE RETURN FILTER - 

1SR0302 - All Models

1SR0200 - All Models

BOTTOM RETURN FILTER - 

1BR0114 or 1BR0214 - For 14-1/2” cabinets

1BR0117 or 1BR0217 - For 17-1/2” cabinets

1BR0121 or 1BR0221 - For 21” cabinets

1BR0124 or 1BR0224 - For 24-1/2” cabinets

INTERNAL FILTER WITH FIBER FILTER - 

1HF0801 - All Models

HIGH ALTITUDE PRESSURE SWITCHES - 

For installation where the altitude is less than 8,000 feet it is
not required that the pressure switch be changed. For alti-
tudes above 8,000 feet see kits below. Conversion must be
made by qualified distributor or dealer personnel.

1PS0301 - 040, 060 MBH
1PS0302 - 080 MBH
1PS0311 - 100, 115, 130 MBH

ROOM THERMOSTATS 

- A wide selection of compatible

thermosets are available to provide optimum performance
and features for any installation.

1H/1C, manual change-over electronic non-programmable 
thermostat.

1H/1C, auto/manual changeover, electronic programmable,
deluxe 7-day, thermostat.

1H/1C, auto/manual changeover, electronic programmable.

* For the most current accessory information, refer to the
price book or consult factory.

Summary of Contents for AFFINITY PS8*UH

Page 1: ...appliance as allowed by the National Fuel Gas Code WARRANTY 20 year limited warranty on the heat exchanger 10 year heat exchanger warranty on commercial applica tions 5 year limited parts warranty FEA...

Page 2: ...12 N L 040UH11 1200 A 14 1 2 13 1 4 11 1 2 10 1 8 PS8A12 N L 060UH11 1200 A 14 1 2 13 1 4 11 1 2 10 1 8 PS8A12 N L 080UH11 1200 A 14 1 2 13 1 4 11 1 2 10 1 8 PS8B16 N L 080UH11 1600 B 17 1 2 16 1 4 14...

Page 3: ...N L 100UH11 100 80 1200 17 1 2 12 0 80 0 40 70 PS8B16 N L 100UH11 100 80 1600 17 1 2 12 0 80 0 35 65 PS8C20 N L 100UH11 100 80 2000 21 14 0 80 0 25 55 PS8C16N115UH11 115 92 1600 21 12 0 80 0 35 65 PS...

Page 4: ...970 1840 1730 1680 1570 1460 1260 Medium Low 1720 1700 1670 1620 1570 1500 1430 1310 1160 1000 Low 1410 1390 1360 1330 1280 1220 1170 1060 930 840 PS8B12 N L 100UH11 High 1700 1620 1560 1480 1390 1300...

Page 5: ...High 2710 2640 2560 2480 2360 2260 2160 2010 1860 1650 Medium High 2110 2110 2070 2030 1980 1910 1850 1710 1570 1300 Medium Low 1690 1690 1650 1610 1540 1480 1410 1280 1170 1030 Low 1350 1330 1310 129...

Page 6: ...ters may not exceed 300 feet per minute All velocities over this require the use of high velocity filters 2 Air flows above 1800 CFM require either return from two sides or one side plus bottom RECOMM...

Page 7: ...Cool Y Single Stage Cool DN11C00124 C 24 Volt Common C 24 Volt Common Optional w Batteries BN11C01124 DP11C40124 PSC 2 STAGE COOLING READY FURNACE CONTROL SINGLE STAGE AIR CONDITIONING BN11C00124 BP11...

Page 8: ...CFM 33 4 m3 min Subtract the airflow 0 50 w c 125 Pa from the airflow 0 60 w c 150 Pa to obtain airflow difference 1180 1250 70 CFM 12 m3 min Subtract the total system static from 0 50 w c 125 Pa and...

Reviews: